数据处理的基本目的是从大量的、可能是杂乱无章的、难以理解的数据中抽取并推导出对于某些特定的人们来说是有价值、有意义的数据。以下是由小编整理关于什么是数据处理的内容,希望大家喜欢!
数据处理的基本信息
处理软件
数据处理离不开软件的支持,数据处理软件包括:用以书写处理程序的各种程序设计语言及其编译程序,管理数据的文件系统和数据库系统,以及各种数据处理方法的应用软件包。为了保证数据安全可靠,还有一整套数据安全保密的技术。
方式
根据处理设备的结构方式、工作方式,以及数据的时间空间分布方式的不同,数据处理有不同的方式。不同的处理方式要求不同的硬件和软件支持。每种处理方式都有自己的特点,应当根据应用问题的实际环境选择合适的处理方式。数据处理主要有四种分类方式①根据处理设备的结构方式区分,有联机处理方式和脱机处理方式。②根据数据处理时间的分配方式区分,有批处理方式、分时处理方式和实时处理方式。③根据数据处理空间的分布方式区分,有集中式处理方式和分布处理方式。④根据计算机中央处理器的工作方式区分,有单道作业处理方式、多道作业处理方式和交互式处理方式。
数据处理对数据(包括数值的和非数值的)进行分析和加工的技术过程。包括对各种原始数据的分析、整理、计算、编辑等的加工和处理。比数据分析含义广。随着计算机的日益普及,在计算机应用领域中,数值计算所占比重很小,通过计算机数据处理进行信息管理已成为主要的应用。如测绘制图管理、仓库管理、财会管理、交通运输管理,技术情报管理、办公室自动化等。在地理数据方面既有大量自然环境数据(土地、水、气候、生物等各类资源数据),也有大量社会经济数据(人口、交通、工农业等),常要求进行综合性数据处理。故需建立地理数据库,系统地整理和存储地理数据减少冗余,发展数据处理软件,充分利用数据库技术进行数据管理和处理。
数据处理的工具
根据数据处理的不同阶段,有不同的专业工具来对数据进行不同阶段的处理。
在数据转换部分,有专业的ETL工具来帮助完成数据的提取、转换和加载,相应的工具有Informatica和开源的Kettle。
在数据存储和计算部分,指的数据库和数据仓库等工具,有Oracle,DB2,MySQL等知名厂商,列式数据库在大数据的背景下发展也非常快。
在数据可视化部分,需要对数据的计算结果进行分析和展现,有BIEE,Microstrategy,Yonghong的Z-Suite等工具。
数据处理的软件有EXCEL MATLAB Origin等等,当前流行的图形可视化和数据分析软件有Matlab,Mathmatica和Maple等。这些软件功能强大,可满足科技工作中的许多需要,但使用这些软件需要一定的计算机编程知识和矩阵知识,并熟悉其中大量的函数和命令。而使用Origin就像使用Excel和Word那样简单,只需点击鼠标,选择菜单命令就可以完成大部分工作,获得满意的结果。
大数据时代,需要可以解决大量数据、异构数据等多种问题带来的数据处理难题,Hadoop是一个分布式系统基础架构,由Apache基金会开发。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力高速运算和存储。Hadoop实现了一个分布式文件系统 Hadoop Distributed File System,HDFS。HDFS有着高容错性的特点,并且设计用来部署在低廉的硬件上。而且它提供高传输率来访问应用程序的数据,适合那些有着超大数据集的应用程序。
数据处理与数据管理
数据处理是从大量的原始数据抽取出有价值的信息,即数据转换成信息的过程。主要对所输入的各种形式的数据进行加工整理,其过程包含对数据的收集、存储、加工、分类、归并、计算、排序、转换、检索和传播的演变与推导全过程。
数据管理是指数据的收集整理、组织、存储、维护、检索、传送等操作,是数据处理业务的基本环节,而且是所有数据处理过程中必有得共同部分。
数据处理中,通常计算比较简单,且数据处理业务中的加工计算因业务的不同而不同,需要根据业务的需要来编写应用程序加以解决。而数据管理则比较复杂,由于可利用的数据呈爆炸性增长,且数据的种类繁杂,从数据管理角度而言,不仅要使用数据,而且要有效地管理数据。因此需要一个通用的、使用方便且高效的管理软件,把数据有效地管理起来。
数据处理与数据管理是相联系的,数据管理技术的优劣将对数据处理的效率产生直接影响。而数据库技术就是针对该需求目标进行研究并发展和完善起来的计算机应用的一个分支。