九年级的一元一次方程的难度加大,教师们要如何准备好的练习题呢?下面是小编为大家带来的关于九年级数学上册一元二次方程练习题,希望会给大家带来帮助。
九年级数学上册一元二次方程练习题(一)
一、选择题:(每小题3分,共24分)
1.下列方程中,常数项为零的是( )
A.x2+x=1 B.2x2-x-12=12; C.2(x2-1)=3(x-1) D.2(x2+1)=x+2
2.下列方程:①x2=0,② -2=0,③2 +3x=(1+2x)(2+x),④3 - =0,⑤ -8x+ 1=0中,
一元二次方程的个数是( )
A.1个 B2个 C.3个 D.4个
3.把方程(x- )(x+ )+(2x-1)2=0化为一元二次方程的一般形式是( )
A.5x2-4x-4=0 B.x2-5=0C.5x2-2x+1=0 D.5x2-4x+6=0
4.方程x2=6x的根是( )
A.x1=0,x2=-6 B.x1=0,x2=6C.x=6 D.x=0
5.方2x2-3x+1=0经为(x+a)2=b的形式,正确的是( )
A. ; B. ; C. ; D.以上都不对
6.若两个连续整数的积是56,则它们的和是( )
A.11 B.15 C.-15 D.±15
7.不解方程判断下列方程中无实数根的是( )
A.-x2=2x-1 B.4x2+4x+ =0; C. D.(x+2)(x-3)==-5
8.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )
A.200(1+x)2=1000 B.200+200×2x=1000
C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000
二、填空题:(每小题3分,共24分)
9.方程 化为一元二次方程的一般形式是________,它的一次项系数是______.
10.关于x的一元二次方程x2+bx+c=0有实数解的条件是__________.
11.用______法解方程3(x-2)2=2x-4比较简便.
12.如果2x2+1与4x2-2x-5互为相反数,则x的值为________.
13.如果关于x的一元二次方程2x(kx-4)-x2+6=0没有实数根,那么k 的最小整数值是__________.
14.如果关于x的方程4mx2-mx+1=0有两个相等实数根,那么它的根是_______.
15.若一元二次方程(k-1)x2-4x-5=0 有两个不相等实数根, 则k 的取值范围是_______.
16.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________.
三、解答题(2分)
17.用适当的方法解下列一元二次方程.(每小题5分,共15分)
(1)5x(x-3)=6-2x;(2)3y2+1= ; (3)(x-a)2=1-2a+a2(a是常数)
18.(7分)已知关于x的一元二次方程x2+mx+n=0的一个解是2,另一个解是正数, 而且也是方程(x+4)2-52=3x的解,你能求出m和n的值吗?
19.(10分)已知关于x的一元二次方程x2-2kx+ k2-2=0.
(1)求证:不论k为何值,方程总有两不相等实数根.
(2)设x1,x2是方程的根,且 x12-2kx1+2x1x2=5,求k的值.
四、列方程解应用题(每题10分,共20分)
20.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.
21.某商场今年1月份销售额为100万元,2月份销售额下降了10%, 该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3, 4月份平均每月销售额增长的百分率.
九年级数学上册一元二次方程练习题答案:
一、 DAABC,DBD
二、
9.x2+4x-4=0,4
10.
11.因式分解法
12.1或
13.2
14.
15.
16.30%
三、
17.(1)3, ;(2) ;(3)1,2a-1
18.m=-6,n=8
19.(1)Δ=2k2+8>0,∴不论k为何值,方程总有两不相等实数根.
(2)
四、
20.20%
21.20%
九年级数学上册一元二次方程练习题(二)
一、选择题(共8题,每题有四个选项,其中只有一项符合题意。每题3分,共24分):
1.下列方程中不一定是一元二次方程的是( )
A.(a-3)x2=8 (a≠3) B.ax2+bx+c=0
C.(x+3)(x-2)=x+5D.
2下列方程中,常数项为零的是( )
A.x2+x=1 B.2x2-x-12=12; C.2(x2-1)=3(x-1) D.2(x2+1)=x+2
3.一元二次方程2x2-3x+1=0化为(x+a)2=b的形式,正确的是( )
A. ; B. ; C. ; D.以上都不对
4.关于 的一元二次方程 的一个根是0,则 值为( )
A、 B、 C、 或 D、
5.已知三角形两边长分别为2和9,第三边的长为二次方程x2-14x+48=0的一根, 则这个三角形的周长为( )
A.11 B.17 C.17或19 D.19
6.已知一个直角三角形的两条直角边的长恰好是方程 的两个根,则这个直角三角形的斜边长是( )
A、 B、3 C、6 D、9
7.使分式 的值等于零的x是( )
A.6 B.-1或6 C.-1 D.-6
8.若关于y的一元二次方程ky2-4y-3=3y+4有实根,则k的取值范围是( )
A.k>- B.k≥- 且k≠0 C.k≥- D.k> 且k≠0
9.已知方程 ,则下列说中,正确的是( )
(A)方程两根和是1 (B)方程两根积是2
(C)方程两根和是 (D)方程两根积比两根和大2
10.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )
A.200(1+x)2=1000 B.200+200×2x=1000
C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000
二、填空题:(每小题4分,共20分)
11.用______法解方程3(x-2)2=2x-4比较简便.
12.如果2x2+1与4x2-2x-5互为相反数,则x的值为________.
13.
14.若一元二次方程ax2+bx+c=0(a≠0)有一个根为-1,则a、b、c的关系是______.
15.已知方程3ax2-bx-1=0和ax2+2bx-5=0,有共同的根-1, 则a= ______, b=______.
16.一元二次方程x2-3x-1=0与x2-x+3=0的所有实数根的和等于____.
17.已知3- 是方程x2+mx+7=0的一个根,则m=________,另一根为_______.
18.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.
19.已知 是方程 的两个根,则 等于__________.
20.关于 的二次方程 有两个相等实根,则符合条件的一组 的实数值可以是 , .
三、用适当方法解方程:(每小题5分,共10分)
21. 22.
四、列方程解应用题:(每小题7分,共21分)
23.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.
24.如图所示,在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570m2,道路应为多宽?
25.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?
26.解答题(本题9分)
已知关于 的方程 两根的平方和比两根的积大21,求 的值
九年级数学上册一元二次方程练习题答案:
一、选择题:
1、B 2、D 3、C 4、B 5、D
6、B 7、A 8、B 9、C 10、D
二、填空题:
11、提公因式 12、- 或1 13、 , 14、b=a+c 15、1 ,-2
16、3 17、-6 ,3+ 18、x2-7x+12=0或x2+7x+12=0 19、-2
20、2 ,1(答案不唯一,只要符合题意即可)
三、用适当方法解方程:
21、解:9-6x+x2+x2=5 22、解:(x+ )2=0
x2-3x+2=0 x+ =0
(x-1)(x-2)=0 x1=x2= -
x1=1 x2=2
四、列方程解应用题:
23、解:设每年降低x,则有
(1-x)2=1-36%
(1-x)2=0.64
1-x=±0.8
x=1±0.8
x1=0.2 x2=1.8(舍去)
答:每年降低20%。
24、解:设道路宽为xm
(32-2x)(20-x)=570
640-32x-40x+2x2=570
x2-36x+35=0
(x-1)(x-35)=0
x1=1 x2=35(舍去)
答:道路应宽1m
25、⑴解:设每件衬衫应降价x元。
(40-x)(20+2x)=1200
800+80x-20x-2x2-1200=0
x2-30x+200=0
(x-10)(x-20)=0
x1=10(舍去) x2=20
⑵解:设每件衬衫降价x元时,则所得赢利为
(40-x)(20+2x)
=-2 x2+60x+800
=-2(x2-30x+225)+1250
=-2(x-15)2+1250
所以,每件衬衫降价15元时,商场赢利最多,为1250元。
26、解答题:
解:设此方程的两根分别为X1,X2,则
(X12+X22)- X1X2=21
(X1+X2)2-3 X1X2 =21
[-2(m-2)]2-3(m2+4)=21
m2-16m-17=0
m1=-1 m2=17
因为△≥0,所以m≤0,所以m=-1