初中数学解题思路 小学数学常用的十一种解题思路

   小学数学常用的十一种解题思路

 

  一、直接思路

  “直接思路”是解题中的常规思路。它一般是通过分析、综合、归纳等方法,直接找到解题的途径。

  【顺向综合思路】从已知条件出发,根据数量关系先选择两个已知数量,提出可以解决的问题;然后把所求出的数量作为新的已知条件,与其他的已知条件搭配,再提出可以解决的问题;这样逐步推导,直到求出所要求的解为止。这就是顺向综合思路,运用这种思路解题的方法叫“综合法”。

初中数学解题思路 小学数学常用的十一种解题思路

  例1 兄弟俩骑车出外郊游,弟弟先出发,速度为每分钟200米,弟弟出发5分钟后,哥哥带一条狗出发,以每分钟250米的速度追赶弟弟,而狗以每分钟300米的速度向弟弟追去,追上弟弟后,立即返回,见到哥哥后又立即向弟弟追去,直到哥哥追上弟弟,这时狗跑了多少千米?

  分析(按顺向综合思路探索):

  (1)根据弟弟速度为每分钟200米,出发5分钟的条件,可以求什么?

  可以求出弟弟走了多少米,也就是哥哥追赶弟弟的距离。

  (2)根据弟弟速度为每分钟200米,哥哥速度为每分钟250米,可以求什么?

  可以求出哥哥每分钟能追上弟弟多少米。

  (3)通过计算后可以知道哥哥追赶弟弟的距离为1000米,每分钟可追上的距离为50米,根据这两个条件,可以求什么?

  可以求出哥哥赶上弟弟所需的时间。

  (4)狗在哥哥与弟弟之间来回不断奔跑,看起来很复杂,仔细想一想,狗跑的时间与谁用的时间是一样的?

  狗跑的时间与哥哥追上弟弟所用的时间是相同的。

  (5)已知狗以每分钟300米的速度,在哥哥与弟弟之间来回奔跑,直到哥哥追上弟弟为止,和哥哥追上弟弟所需的时间,可以求什么?

  可以求出这时狗总共跑了多少距离?

  这个分析思路可以用下图(图2.1)表示。

  例2 下面图形(图2.2)中有多少条线段?

  分析(仍可用综合思路考虑):

  我们知道,直线上两点间的一段叫做线段,如果我们把上面任意相邻两点间的线段叫做基本线段,那么就可以这样来计数。

  (1)左端点是A的线段有哪些?

  有 AB AC AD AE AF AG共 6条。

  (2)左端点是B的线段有哪些?

  有 BC、BD、BE、BF、BG共5条。

  (3)左端点是C的线段有哪些?

  有CD、CE、CF、CG共4条。

  (4)左端点是D的线段有哪些?

  有DE、DF、DG共3条。

  (5)左端点是E的线段有哪些?

  有EF、EG共2条。

  (6)左端点是F的线段有哪些?

  有FG共1条。

  然后把这些线段加起来就是所要求的线段。

  二、逆向分析思路

  从题目的问题入手,根据数量关系,找出解这个问题所需要的两个条件,然后把其中的一个(或两个)未知的条件作为要解决的问题,再找出解这一个(或两个)问题所需的条件;这样逐步逆推,直到所找的条件在题里都是已知的为止,这就是逆向分析思路,运用这种思路解题的方法叫分析法。

  例1 两只船分别从上游的A地和下游的B地同时相向而行,水的流速为每分钟30米,两船在静水中的速度都是每分钟600米,有一天,两船又分别从A、B两地同时相向而行,但这次水流速度为平时的2倍,所以两船相遇的地点比平时相遇点相差60米,求A、B两地间的距离。

  分析(用分析思路考虑):

  (1)要求A、B两地间的距离,根据题意需要什么条件?

  需要知道两船的速度和与两船相遇的时间。

  (2)要求两船的速度和,必要什么条件?

  两船分别的速度各是多少。题中已告之在静水中两船都是每分钟600米,那么不论其水速是否改变,其速度和均为(600+600)米,这是因为顺水船速为:船速+水速,逆水船速为:船速-水速,故顺水船速与逆水船速的和为:船速+水速+船速-水速=2个船速(实为船在静水中的速度)

  (3)要求相遇的时间,根据题意要什么条件?

  两次相遇的时间因为距离相同,速度和相同,所以应该是相等的,这就是说,尽管水流的速度第二次比第一次每分钟增加了30米,仍不会改变相遇时间,只是改变了相遇地点:偏离原相遇点60米,由此可知两船相遇的时间为60÷30=2(小时)。

  此分析思路可以用下图(图2.3)表示:

  例2 五环图由内径为4,外径为5的五个圆环组成,其中两两相交的小曲边四边形(阴影部分)的面积都相等(如图2.4),已知五个圆环盖住的总面积是122.5,求每个小曲边四边形的面积(圆周率π取3.14)

  分析(仍用逆向分析思路探索):

  (1)要求每个小曲边四边形的面积,根据题意必须知道什么条件?

  曲边四边形的面积,没有公式可求,但若知道8个小曲边四边形的总面积,则只要用8个曲边四边形总面积除以8,就可以得到每个小曲边四边形的面积了。

  (2)要求8个小曲边四边形的总面积,根据题意需要什么条件?

  8个小曲边四边形恰好是圆环面积两两相交重叠一次的部分,因此只要把五个圆环的总面积减去五个圆环盖住的总面积就可以了。

  (3)要求五个圆环的总面积,根据题意需要什么条件?

  求出一个圆环的面积,然后乘以5,就是五个圆环的总面积。

  (4)要求每个圆环的面积,需要什么条件?

  已知圆环的内径(4)和外径(5),然后按圆环面积公式求就是了。

  圆环面积公式为:

  S圆环=π(R2-r2)

  =π(R+r)(R-r)

  其思路可用下图(图2.5)表示:

  三、一步倒推思路

  顺向综合思路和逆向分析思路是互相联系,不可分割的。在解题时,两种思路常常协同运用,一般根据问题先逆推第一步,再根据应用题的条件顺推,使双方在中间接通,我们把这种思路叫“一步倒推思路”。这种思路简明实用。

  例1 一只桶装满10千克水,另外有可装3千克和7千克水的两只空桶,利用这三只桶,怎样才能把10千克水分为5千克的两份?

  分析(用一步倒推思路考虑):

  (1)逆推第一步:把10千克水平分为5千克的两份,根据题意,关键是要找到什么条件?

  因为有一只可装3千克水的桶,只要在另一只桶里剩2千克水,利用3+2=5,就可以把水分成5千克一桶,所以关键是要先倒出一个2千克水。

  (2)按条件顺推。第一次:10千克水倒入7千克桶,10千克水桶剩3千克水,7千克水倒入3千克桶,7千克水桶剩4千克水,3千克水桶里有水3千克;第二次:3千克桶的水倒入10千克水桶,这时10千克水桶里有水6千克,把7千克桶里的4千克水倒入3千克水桶里,这时7千克水桶里剩水1千克,3千克水桶里有水3千克;第三次:3千克桶里的水倒入10千克桶里,这时10千克桶里有水9千克,7千克桶里的1千克水倒入3千克桶里,这时7千克桶里无水,3千克桶里有水1千克;第四次:10千克桶里的9千克水倒入7千克桶里,10千克水桶里剩下 2千克水,7千克桶里的水倒入3千克桶里(原有1千克水),只倒出2千克水,7千克桶里剩水5千克,3千克桶里有水3千克,然后把3千克桶里的3千克水倒10千克桶里,因为原有2千克水,这时也正好是5千克水了。

  其思路可用下图(图2.6和图2.7)表示:

  问题:

  例2 今有长度分别为1、2、3……9厘米的线段各一条,可用多少种不同的方法,从中选用若干条线段组成正方形?

  分析(仍可用一步倒推思路来考虑):

  (1)逆推第一步。要求能用多少种不同方法,从中选用若干条线段组成正方形必须的条件是什么?

  根据题意,必须知道两个条件。一是确定正方形边长的长度范围,二是每一种边长有几种组成方法。

  (2)从条件顺推。

  ①因为九条线段的长度各不相同,所以用这些线段组成的正方形至少要7条,最多用了9条,这样就可以求出正方形边长的长度范围为(1+2+……

  ②当边长为7厘米时,各边分别由1+6、2+5、3+4及7组成,只有一种组成方法。

  ③当边长为8厘米时,各边分别由1+7、2+6、3+5及8组成,也只有一种组成方法。

  ④当边长为9厘米时,各边分别由1+8、2+7、3+6及9;1+8、2+7、4+5及9;2+7、3+6、4+5及9;1+8、3+6、4+5及9;1+8、2+7、3+6及4+5共5种组成方法。

  ⑤当边长为10厘米时,各边分别由1+9、2+8、3+7及4+6组成,也只有一种组成方法。

  ⑤当边长为11厘米时,各边分别由2+9、 3+8、4+7及5+6组成,也只有一种组成方法。

  ⑥将上述各种组成法相加,就是所求问题了。

  此题的思路图如下(图2.8):

  问题:

  

爱华网本文地址 » http://www.aihuau.com/a/2312371/344828317.html

更多阅读

如果昨天是明天的话就好了解题思路 初中数学解题思路

如果昨天是明天的话就好了解题思路——简介如果昨天是明天的话就好了,这样今天就是周五了,那么今天是周几?最近这道题目在朋友圈里刷屏,想必困扰着很多朋友,那么到底如何考虑这道题呢,下面我为大家简单介绍一下。朋友,如果这些内容对你有

小学数学作业批语 初中数学作业批语大全

初中数学作业批语大全  1、 你很棒,要是再细心点,相信你会创造更辉煌的成绩!  2、 老师很高兴你能掌握“凑十法”和“破十法”的技巧啦!  3、 字如其人,看着你的作业本,老师仿佛看到了你那张漂亮的脸庞。  4、 你把作业本弄

常见初中数学学习思路

   常见初中数学学习思路:  1.观察与实验  (1)观察法:有目的有计划的通过视觉直观的发现数学对象的规律、性质和解决问题的途径。  (2)实验法:实验法是有目的的、模拟的创设一些有利于观察的数学对象,通过观察研究将复

初中数学解题思路 如何获得数学解题思路

  如何获得数学解题思路     解题思路的获得,一般要经历三个步骤:1.从理解题意中提取有用的信息,如数式特点,图形结构特征等;2.从记忆储存中提取相关的信息,如有关公式,定理,基本模式等;3.将上述两组信息进行有效重

初中几何常用解题步骤 初中数学常用的几种经典解题方法

  初中数学常用的几种经典解题方法      1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最

声明:《初中数学解题思路 小学数学常用的十一种解题思路》为网友把手交与我分享!如侵犯到您的合法权益请联系我们删除