做题要认真,检查要仔细!业精于勤而荒于嬉,行成于思而毁于随。小编整理了关于人教版八年级上册数学配套练习册答案,希望对大家有帮助!
人教版八年级上册数学配套练习册答案(一)
尺规作图(一)
一、选择题. 1.C 2.A
二、填空题. 1.圆规, 没有刻度的直尺 2.第一步:画射线AB;第二步:以A为圆心,MN长为半径作弧,交AB于点C
三、解答题. 1.(略) 2.(略) 3.提示:先画 ,再以B′为圆心,AB长为半径作弧,再以C′为圆心,AC长为半径作弧,两弧交于点A′,则△A′B′C′为所求作的三角形.
尺规作图(二)
一、选择题. 1. D
二、解答题. 1.(略) 2(略)
尺规作图(三)
一、填空题. 1. C △CED 等腰三角形底边上的高就是顶角的平分线
二、解答题. 1.(略) 2.方法不唯一,如可以作点C关于线段BD的对称点C′.
尺规作图(四)
一、填空题. 1.线段垂直平分线上的点到线段的两个端点的距离相等.
二、解答题. 1.(略) 2.(略) 3. 提示:作线段AB的垂直平分线与直线 相交于点P,则P就是车站的位置.
人教版八年级上册数学配套练习册答案(二)
平行四边形的判定(一)
一、选择题. 1.D 2.D
二、填空题. 1. AD=BC (答案不唯一) 2. AF=EC (答案不唯一) 3. 3
三、解答题. 1.证明:∵DE∥BC, EF∥AB ∴四边形DEFB是平行四边形 ∴DE=BF
又 ∵F是BC的中点 ∴BF=CF. ∴DE=CF
2.证明:(1)∵四边形ABCD是平行四边形 ∴AB=CD, AB∥CDCD ∥∥CDCD ∴∠ABD=∠BDC
又 ∵AE⊥BD,CF⊥BD ∴⊿ABE≌⊿CDF.
(2) ∵⊿ABE≌⊿CDF. ∴AE=CF 又 ∵AE⊥BD,CF⊥BD ∴四边形AECF是平行四边形
平行四边形的判定(二)
一、选择题. 1.C 2.C
二、填空题. 1. 平行四边形 2. AE=CF (答案不唯一) 3. AE=CF (答案不唯一)
三、解答题. 1.证明:∵∠BCA=180°-∠B-∠BAC ∠DAC=180°-∠D-∠DCA
且∠B=∠D ∠BAC=∠ACD ∴∠BCA=∠DAC ∴∠BAD=∠BCD
∴四边形ABCD是平行四边形
2.证明:∵四边形ABCD是平行四边形 ∴AO=CO,BO=DO 又 ∵E、F、G、H分别为AO、BO、CO、DO的中点 ∴OE=OG,OF=OH ∴四边形EFGH是平行四边形
人教版八年级上册数学配套练习册答案(三)
逆命题与逆定理(一)
一、选择题. 1. C 2. D
二、填空题.1.已知两个角是同一个角的补角,这两个角相等;若两个角相等,则这两个角的补角也相等.;2. 线段垂直平分线上的点到线段的两个端点的距离相等.
3. 如果∠1和∠2是互为邻补角,那么∠1+∠2 =180 ° 真命题
三、解答题. 1.(1)如果一个三角形的两个锐角互余,那么这个三角形是直角三角形,是真命题;(2)如果 ,是真命题; (3)平行四边形的对角线互相平分,是真命题. 2. 假命题,添加条件(答案不唯一)如:AC=DF 证明(略)
逆命题与逆定理(二)
一、选择题. 1. C 2. D
二、填空题. 1. ①、②、③ 2.80 3.答案不唯一,如△BMD
三、解答题. 1. OE垂直平分AB 证明:∵AC=BD,∠BAC=∠ABD ,BA=BA
∴△ABC≌△BAD ∴∠OAB=∠OBA ∴△AOB是等腰三角形 又∵E是AB的中点
∴OE垂直平分AB 2. 已知:①③(或①④,或②③,或②④) 证明(略)
逆命题与逆定理(三)
一、选择题. 1. C 2.D
二、填空题. 1.15 2.50
三、解答题1. 证明:如图,连结AP,∵PE⊥AB ,PF⊥AC ,
∴∠AEP=∠AFP= 又∵AE=AF,AP=AP,∴Rt△AEP≌Rt△AFP,
∴∠EAP=∠FAP,∴AP是∠BAC的角平分线,故点P在∠BAC的角平分线上
2.提示:作EF⊥CD ,垂足为F,∵DE平分∠ADC ,∠A= ,EF⊥CD ∴AE=FE
∵AE=BE ∴BE=FE 又∵∠B= ,EF⊥CD ∴点E在∠DCB的平分线上
∴CE平分∠DCB