检测是有利于学生们补拙,同学们要如何准备呢?接下来是小编为大家带来的2016七年级下册数学第七章检测试题,供大家参考。
2016七年级下册数学第七章检测试题:一、选择题(每小题3分,满分30分)
1.(2015•湖北随州中考改编)在直角坐标系中,将点(2,-3)向左平移2个单位长度得到的点的坐标是( )
A.(4,-3) B.(-4,3)
C.(0,-3) D.(0,3)
2. 、 、 这三个点中,在第二象限内的有( )
A. 、 、 B. 、 C. 、 D.
3.矩形 的各边分别平行于 轴或 轴,物体甲和物体乙分别由点 (2,0)同时出发,沿矩形 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是( )
A.(2,0) B.(-1,1) C.(-2,1) D.(-1,-1)
4. 已知点 坐标为 ,且点 到两坐标轴的距离相等,则点 的坐标
是( )
A.(3,3) B.(3,-3)
C.(6,-6) D.(3,3)或(6,-6)
5.设点 在 轴上,且位于原点的左侧,则下列结论正确的是( )
A. , 为一切数 B. ,
C. 为一切数, D. ,
6.在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数 ,那么所得的图案与原来图案相比( )
A.形状不变,大小扩大到原来的 倍
B.图案向右平移了 个单位
C.图案向上平移了 个单位
D.图案向右平移了 个单位,并且向上平移了 个单位
7.已知点 ,在 轴上有一点 点与 点的距离为5,则点 的坐标
为( )
A.(6,0) B.(0,1)
C.(0,-8) D.(6,0)或(0,0)
8. 点P(-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为( )
A.(-3,0) B.(-1,6) C.(-3,-6) D.(-1,0)
9.若点 在第二象限,则点 │ │)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
10. 如果m是任意实数,那么点P(m-4,m+1)一定不在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
二、填空题(每小题3分,满分24分)
11. 已知点 是第二象限的点,则 的取值范围是 .
12. 已知点 与点 关于 轴对称,则 , .
13. (2015•山东青岛中考)如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的 ,那么点A的对应点A'的坐标是_______.
14.在平面直角坐标系中,点 (2, +1)一定在第 __________象限.
15. (2015•四川绵阳中考)如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别是A(-2,1)和B(-2,-3),那么第一架轰炸机C的平面坐标
是__________.
16. 已知点 和点 不重合.
(1)当点 关于_______对称时,
(2)当点 关于原点对称时, = _______, =________.
17. 正方形 的边长为4,点 的坐标为(-1,1), 平行于 轴,则点 的坐标为 __________.
18. 围棋盘的左下角呈现的是一局围棋比赛中的几手棋.为记录棋谱方便,横线用数字表示.纵线用英文字母表示,这样,白棋②的位置可记为( ,3),白棋④的位置可记为(G,4),则白棋⑨的位置应记为 __________.
三、解答题(共46分)
19. (7分)ABC各顶点的坐标分别是A(-2,-4),B(0,-4),C(1,-1). 画出△ABC向左平移3个单位后的△ .
20.(7分)(2015•四川宜宾中考节选)在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A ,AB=1,AD=2.写出B,C,D三点的坐标.
21.(8分)有一张图纸被损坏,但上面有如图所示的两个标志点A(-3,1),B(-3,-3)可认,而主要建筑C(3,2)破损,请通过建立直角坐标系找到图中C点的位置.
22.(8分)在直角坐标系中,用线段顺次连接点A( ,0),B(0,3),C(3,3),D(4,0).
(1)这是一个什么图形;(2)求出它的面积;(3)求出它的周长.
23.(8分)点 用 表示,点 用 表示.
若用 → → → → 表示由 到 的一种走法,并规定从 到 只能向上或向右走,用上述表示法再写出另两种走法,并判断这几种走法的路程是否相等.
24.(8分)已知A(-1,0),B(1,1),把线段
AB平移,使点B移动到点D(3,4)处,这时点A移到
点C处.
(1)画出平移后的线段CD,并写出点C的坐标;
(2)如果平移时只能左右或者上下移动,叙述线段AB
是怎样移到CD的.
2016七年级下册数学第七章检测试题答案:1. C 解析:根据平移的性质,结合直角坐标系,点(2,-3)向左平移2个单位长度,即横坐标减2,纵坐标不变,即平移后的点的坐标为(0,-3).
2.D 解析:由图可知, 在第二象限,点 在 轴的正半轴上,点 在 轴的负半轴上,所以,在第二象限内的有 .故选D.
3.D 解析:矩形的边长为4和2,因为物体乙的速度是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1∶2,由题意知:
①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12× =4,物体乙行的路程为12× =8,在BC边相遇;
②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2× =8,物体乙行的路程为12×2× =16,在 边相遇;
③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3× =12,物体乙行的路程为12×3× =24,在 点相遇,此时甲、乙两个物体回到原出发点.
… …
则每相遇三次,两个物体回到原出发点,
因为2 012÷3=670……2,
故两个物体运动后的第2012次相遇的地点是:第二次相遇地点,即物体甲行的路程为12×2× =8,物体乙行的路程为12×2× =16,在DE边相遇;此时相遇点的坐标为(-1,-1),故选D.
4.D 解析:因为点 到两坐标轴的距离相等,所以 ,所以 ,
5.D 解析:因为点 在 轴上,所以纵坐标是0,即 .又因为点 位于原点的左侧,所以横坐标小于0,即 ,所以 ,故选D.
6.D
7.D 解析:过点 作 ⊥ 轴于点 ,则点 的坐标为(3,0).因为点 到 轴的距离为4,所以 .又因为 ,所以由勾股定理得 ,所以点 的坐标为(6,0)或(0,0),故选D.
8. A 解析:根据点的平移规律:左减右加,上加下减,可得点P(-2,-3)向左平移1个单位,再向上平移3个单位后的点的坐标是(-3,0).
9. A 解析:因为点 在第二象限,所以 所以 ︱ ︱>0,因此点 在第一象限.
10. D 解析:∵(m+1)-(m-4)=m+1-m+4=5,
∴点P的纵坐标一定大于横坐标.
∵第四象限的点的横坐标是正数,纵坐标是负数,
∴第四象限的点的横坐标一定大于纵坐标,
∴点P一定不在第四象限.故选D.
11. 解析:因为点 是第二象限的点,所以 解得 .
12.3 -4 解析:因为点 与点 关于 轴对称,所以横坐标不变,纵坐标互为相反数,所以 所以
13. (2,3) 解析:点A的坐标是(6,3),它的纵坐标保持不变,把横坐标变为原来的 ,得到它的对应点A'的坐标是 即A'(2,3).
14.一 解析:因为 ≥0,1>0,
所以纵坐标 +1>0.
因为点 的横坐标2>0,
所以点 一定在第一象限.
15. (2,-1) 解析:通过分析可知,坐标原点在D处的飞机位置, 第15题答图
因此轰炸机C的坐标是(2,-1).
16. (1)x轴;(2)-2 1 解析:两点关于x轴对称时,横坐标相等,纵坐标互为相反数;两点关于原点对称时,横、纵坐标都互为相反数.
17.(3,5) 解析:因为正方形 的边长为4,点 的坐标为(-1,1),
所以点 的横坐标为4-1=3,点 的纵坐标为4+1=5,
所以点 的坐标为(3,5).故答案为(3,5).
18.( ,6) 解析:由题意可知,白棋⑨在纵线对应 ,横线对应6的位置,故记作( ,6).
19. 解:画出△ 如图所示.
20.解:(1) B ,C ,D .
21. 分析:先根据点A(-3,1),B(-3,-3)的坐标,确定出x轴和y轴,再根据C点的坐标(3,2),即可确定C点的位置.
解:点C的位置如图所示.
22. 解:(1)因为(0,3)和(3,3)的纵坐标相同,
的纵坐标也相同,因而BC∥AD.
又因为 ,故四边形 是梯形.作出图形如图所示.
(2)因为 , ,高 ,
故梯形的面积是 .
(3)在Rt△ 中,根据勾股定理得 ,
同理可得 ,因而梯形的周长是 .
23.解:路程相等.
走法一:
;
走法二:
;
答案不唯一.
24.解:(1)因为点 (1,1)移动到点 (3,4)处,如图,
所以 (1,3);
(2)向右平移2个单位长度,再向上平移3个单位长度即可得到 .