概率分布的参数估计Matlab matlab 概率密度估计

命令 β分布的参数a和b的最大似然估计值和置信区间

函数 betafit

格式 PHAT=betafit(X)

[PHAT,PCI]=betafit(X,ALPHA)

说明 PHAT为样本X的β分布的参数a和b的估计量

PCI为样本X的β分布参数a和b的置信区间,是一个2×2矩阵,其第1例为参数a的置信下界和上界,第2例为b的置信下界和上界,ALPHA为显著水平,(1-α)×100%为置信度。

命令 正态分布的参数估计

函数 normfit

格式 [muhat,sigmahat,muci,sigmaci] = normfit(X)

[muhat,sigmahat,muci,sigmaci] = normfit(X,alpha)

说明muhat,sigmahat分别为正态分布的参数μ和σ的估计值,muci,sigmaci分别为置信区间,其置信度为(1-alpha)*100%;alpha给出显著水平α,缺省时默认为0.05,即置信度为95%。

命令 利用mle函数进行参数估计

函数 mle

格式 phat=mle('dist',X) %返回用dist指定分布的最大似然估计值

[phat, pci]=mle('dist',X) %置信度为95%

[phat, pci]=mle('dist',X,alpha) %置信度由alpha确定

[phat, pci]=mle('dist',X,alph,pl) %仅用于二项分布,pl为试验次数。

说明 dist为分布函数名,如:beta(分布)、bino(二项分布)等,X为数据样本,alpha为显著水平α,(1-alpha)*100%为置信度。

其他

函数名

调 用 形 式

概率分布的参数估计(Matlab) matlab 概率密度估计

函 数 说 明

binofit

PHAT= binofit(X, N)

[PHAT, PCI] = binofit(X,N)

[PHAT, PCI]= binofit (X, N, ALPHA)

二项分布的概率的最大似然估计

置信度为95%的参数估计和置信区间

返回水平α的参数估计和置信区间

poissfit

Lambdahat=poissfit(X)

[Lambdahat, Lambdaci] = poissfit(X)

[Lambdahat, Lambdaci]= poissfit (X, ALPHA)

泊松分布的参数的最大似然估计

置信度为95%的参数估计和置信区间

返回水平α的λ参数和置信区间

normfit

[muhat,sigmahat,muci,sigmaci] = normfit(X)

[muhat,sigmahat,muci,sigmaci] = normfit(X, ALPHA)

正态分布的最大似然估计,置信度为95%

返回水平α的期望、方差值和置信区间

betafit

PHAT =betafit (X)

[PHAT, PCI]= betafit (X, ALPHA)

返回β分布参数a和 b的最大似然估计

返回最大似然估计值和水平α的置信区间

unifit

[ahat,bhat] = unifit(X)

[ahat,bhat,ACI,BCI] = unifit(X)

[ahat,bhat,ACI,BCI]=unifit(X, ALPHA)

均匀分布参数的最大似然估计

置信度为95%的参数估计和置信区间

返回水平α的参数估计和置信区间

expfit

muhat =expfit(X)

[muhat,muci] = expfit(X)

[muhat,muci] = expfit(X,alpha)

指数分布参数的最大似然估计

置信度为95%的参数估计和置信区间

返回水平α的参数估计和置信区间

gamfit

phat =gamfit(X)

[phat,pci] = gamfit(X)

[phat,pci] = gamfit(X,alpha)

γ分布参数的最大似然估计

置信度为95%的参数估计和置信区间

返回最大似然估计值和水平α的置信区间

weibfit

phat = weibfit(X)

[phat,pci] = weibfit(X)

[phat,pci] = weibfit(X,alpha)

韦伯分布参数的最大似然估计

置信度为95%的参数估计和置信区间

返回水平α的参数估计及其区间估计

Mle

phat = mle('dist',data)

[phat,pci] = mle('dist',data)

[phat,pci] = mle('dist',data,alpha)

[phat,pci] = mle('dist',data,alpha,p1)

分布函数名为dist的最大似然估计

置信度为95%的参数估计和置信区间

返回水平α的最大似然估计值和置信区间

仅用于二项分布,pl为试验总次数

  

爱华网本文地址 » http://www.aihuau.com/a/25101010/38361.html

更多阅读

Parzenwindow概率密度估计 parzen窗密度估计

主要参考资料:http://www.personal.rdg.ac.uk/~sis01xh/teaching/CY2D2/Pattern2.pdf在数学上一个连续概率密度函数p(x)的需满足以下的条件:1、x在a和b之间的概率为:2、对所有的x,p(x)非负3、p(x)的积分值为1最经常使用的概率密度函数

批处理:FOR的参数/D和/R原创

更新日期:20130330第四节FOR的参数FOR常见的参数有/D、/R、/F、/L。内容比较多,需要逐一消化。课时建议:参数/D、/R与/L用一课时;参数/F用四课时,其中eol=和skip=用一课时,delims=、tokens=和usebackq各用一课时。下面逐一讲解。一、/D参

声明:《概率分布的参数估计Matlab matlab 概率密度估计》为网友笙歌散尽游人去分享!如侵犯到您的合法权益请联系我们删除