抽屉原理的应用 抽屉原理的例子

抽屉原理的应用
 1947年,匈牙利数学家把这一原理引进到中学生数学竞赛中,当年匈牙利全国数学竞赛有一道这样的试题:“证明在任何六个人中,一定可以找到三个互相认识的人,或者三个互不认识的人。”
 这个问题乍看起来,似乎令人匪夷所思。但如果你懂得抽屉原理,要证明这个问题是十分简单的。我们用A、B、C、D、E、F代表六个人,从中随便找一个,例如A吧,把其余五个人放到“与A认识”和“与A不认识”两个“抽屉”里去,根据抽屉原理,至少有一个抽屉里有三个人。不妨假定在“与A认识”的抽屉里有三个人,他们是B、C、D。如果B、C、D三人互不认识,那么我们就找到了三个互不认识的人;如果B、C、D三人中有两个互相认识,例如B与C认识,那么,A、B、C就是三个互相认识的人。不管哪种情况,本题的结论都是成立的。
 由于这个试题的形式新颖,解法巧妙,很快就在全世界广泛流传,使不少人知道了这一原理。其实,抽屉原理不仅在数学中有用,在现实生活中也到处在起作用,如招生录取、就业安排、资源分配、职称评定等等,都不难看到抽屉原理的作用。 
兔同笼
你以前听说过“鸡兔同笼”问题吗?这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔? 
你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗? 
解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1。因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只)。显然,鸡的只数就是35-12=23(只)了。 
这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已。这种思维方法叫化归法。化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题。
普乔柯趣题
普乔柯是原苏联著名的数学家。1951年写成《小学数学教学法》一书。这本书中有下面一道有趣的题。 
商店里三天共卖出1026米布。第二天卖出的是第一天的2倍;第三天卖出的是第二天的3倍。求三天各卖出多少米布? 
这道题可以这样想:把第一天卖出布的米数看作1份。就可以画出下面的线段图: 
第一天为1份;第二天为第一天的2倍;第三天为第二天的3倍,也就是第一天的2×3倍。 
列综合算式可求出第一天卖布的米数: 
1026÷(l+2+6)=1026÷9=114(米) 
而 114×2=228(米) 
228×3=684(米) 
所以三天卖的布分别是:114米、228米、684米。 
请你接这种方法做一道题。 
有四人捐款救灾。乙捐款为甲的2倍,丙捐款为乙的3倍,丁捐款为丙的4倍。他们共捐款132元。求四人各捐款多少元? 
鬼谷算
我国汉代有位大将,名叫韩信。他每次集合部队,只要求部下先后按l~3、1~5、1~7报数,然后再报告一下各队每次报数的余数,他就知道到了多少人。他的这种巧妙算法,人们称为鬼谷算,也叫隔墙算,或称为韩信点兵,外国人还称它为“中国剩余定理”。到了明代,数学家程大位用诗歌概括了这一算法,他写道:
三人同行七十稀,五树梅花廿一枝, 
七子团圆月正半,除百零五便得知。 
这首诗的意思是:用3除所得的余数乘上70,加上用5除所得余数乘以21,再加上用7除所得的余数乘上15,结果大于105就减去105的倍数,这样就知道所求的数了。 
比如,一篮鸡蛋,三个三个地数余1,五个五个地数余2,七个七个地数余3,篮子里有鸡蛋一定是52个。算式是: 
1×70+2×21+3×15=157 
157-105=52(个) 
请你根据这一算法计算下面的题目。 
新华小学订了若干张《中国少年报》,如果三张三张地数,余数为1张;五张五张地数,余数为2张;七张七张地数,余数为2张。新华小学订了多少张《中国少年报》呢?

20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁.
伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。
阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".
塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已分享给你的朋友吧:人人网新浪微博开心网MSNQQ空间
对我有帮助
122回答时间:2009-12-13 12:22 | 我来评论

向TA求助 回答者: 1281781251 | 一级

擅长领域: 暂未定制

参加的活动: 暂时没有参加的活动

相关内容
抽屉原理的应用 抽屉原理的例子
2011-1-25 数学小故事不超过60字!!!要趣味的!!!! 30
2011-1-24 数学小故事 60
2011-1-24 简短的数学小故事和小游戏(要写在手抄报上)。 10
2011-1-8 数学小故事四则 34
2010-12-12 给一个数学小故事写一个读后感(200字以内) 40
更多关于数学小故事的问题>>
查看同主题问题: 数学 故事
等待您来回答2回答三岁小孩支气管肺炎,检查支原体感染,肝脏偏大 怎么治疗.0回答福州这边要考教师证需要的教材是什么,哪里出版的好?.0回答山东省菏泽市牡丹区万福办事处上百万亩大棚西瓜、甜瓜即将上市,品种....0回答我的身份证和毕业证的身份证号码不一样,因为上大学后改了身份证号码,....0回答300字左右的数学小故事,要求是亲身经历的,不要太简单,4,5年级难度。.0回答10你好,看到你的回答说单纯的尿素支原体阳性,没有症状是不需要治疗的....0回答20福州哪里可以找人帮忙参加家长会cell.2回答高中阶段的物理学史有哪些? 有知道的告诉一下 3Q 万福!.更多等待您来回答的问题>>其他回答 共1条
古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。 德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算 而献身于数学,以至在数学上作出许多重大贡献。甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑。
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。 瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语12:26

  

爱华网本文地址 » http://www.aihuau.com/a/25101011/47846.html

更多阅读

抽屉原理的应用 抽屉原理的例子

抽屉原理的应用 1947年,匈牙利数学家把这一原理引进到中学生数学竞赛中,当年匈牙利全国数学竞赛有一道这样的试题:“证明在任何六个人中,一定可以找到三个互相认识的人,或者三个互不认识的人。” 这个问题乍看起来,似乎令人匪夷所思

流程图符号及流程图的例子 生产流程图符号含义

介绍常见的流程图符号及流程图的例子。本章例1-1的算法的流程图如图1-2所示。本章例1-2的算法的流程图如图1-3所示。在流程图中,判断框左边的流程线表示判断条件为真时的流程,右边的流程线表示条件为假时的流程,有时就在其左、右流程线

一个用eXosip实现的UAC和UAS的例子调试成功 libexosip2

经过一段时间的学习,对sip总算有了一点认识,在学习过程中,遇到了太多的问题,郁闷过,惆怅过,但是一咬牙,还是过来了。令我感动的是,在网上遇到一些很热心的朋友,不厌其烦地给我以解惑,感谢他们,尤其是友善的大狗,呵呵,希望将来有一天他能看到这篇

科学管理与人本管理的对立统一 矛盾对立统一的例子

王江松2013-2-1 9:12:47  来源:《中国工人》2012年9期摘要:管理学既是一门理论研究学科,同时又是一门必须强调应用与实践的学科。国家自然科学基金委管理科学部去年首次明确提出实践导向,管理研究必须融入中国国情,要进行中国管理实

声明:《抽屉原理的应用 抽屉原理的例子》为网友沙漏里的时光分享!如侵犯到您的合法权益请联系我们删除