“图形与变换”的备课与教学——曹培英 ps怎么自由变换图形

“图形与变换”的备课与教学

曹培英

一、引进的背景。

为什么要在中小学引进图形与变换的内容?不妨从数学本身和数学教育的历史视角切入讨论。

我们知道,约公元前300年,古希腊著名数学家欧几里得在前人基础上写成的不配名著《几何原本》,几乎包括了中小学所学习的平面几何、立体几何的全部内容。如此古老的几何内容,自然成了历次数学课程改革关注的焦点。其中最为激进的,如法国布尔巴基学派主要人物狄奥东尼甚至喊出了“欧几里得滚出去”的口号。但改来改去,欧氏几何的一些内容,仍然构成了多数国家中小学数学几何部分的主要内容。有人称之为“不倒翁现象”。这是因为,从数学的视角欧氏几何提供了现实世界的一个基本模型,非常直观地反映了我们人类的生存空间,刻画了我们视觉所观察到的物体形状及其相互位置关系。这个模型的基本内容是学生能够理解和掌握的,并且应用广泛,也有利于引导中小学生从形的角度去认识我们周围的物体和生活空间。

尽管欧氏几何仍然具有难以替代的学习价值,但在以往的教学中,它又确实暴露出一些问题。例如内容体系比较封闭,脱离实际,教学代价太大,等等。这些问题需要数学课程的设计者与数学教学的实践者共同去面对、解决。怎样改造这些传统的、古老的几何内容,怎样克服教学上的相关弊端呢?

一条途径是教学法方面的改进。首先是内容的精简与演绎体系的通俗化。如精选一些具有实用价值和对继续学习发挥基础作用的内容,打破封闭的公理体系,扩大公理系统,降低证明难度,等等。其次是突出几何事实与几何应用,重视几何直观以及合情推理对于演绎推理的互补作用等非形式化策略。

另一条途径是用近现代数学的观点,高屋建瓴地处理传统的内容。其中几何图形的运动变换观点就是这样的重要观点之一。

从数学发展的角度来看,1872年,德国大数学家克莱茵(KIein,1849~1925)在爱尔兰根大学做了现在大家叫做《爱尔兰根纲领》的演说,提出用变换群将几何分类,认为一种几何无非是研究某种变换群下的不变量。这是一个里程碑式的论断,它改变了近两千年来人们用静止的观点研究几何的传统方法,从变换的视角整体考虑几何学的问题,使当时的各种几何学有了统一的形式,对几何学的发展起到了重大的推动作用。《爱尔兰根纲领》公开发表后,很快被人们接受,一些新的几何分支相继建立,几何学的理论及应用呈现出前所未有的局面。这一观点对基础教育数学课程中几何教学的改革也产生影响。

按照克莱茵的观点,我们所研究的几何图形的种种性质,只不过是研究几何图形在各种几何变换下的不变性和不变量。例如,线段的长度不变、角的大小不变和直线的性质不变,等等,都是在全等变换下的不变量和不变性。但线段的长度不变,在相似变换下就不再存在(相似比为1除外)。于是两线段的比不变,又成了相似变换下的不变量。正是这些建筑在不变量和不变性基础上的图形性质,构成了我们所研究的几何基本内容。

从国际数学课程改革的历程来看,第二次世界大战以后,特别是在上世纪60年代的“新数学”改革的浪潮中,将运动观点引入几何,成了一种时尚。特别是平移、旋转以及轴对称、中心对称等观念已被不少国家的中小学教材所吸收,并放在比较重要的位置。如果说集合与对应的思想的渗透,在某种意义上给传统算术与代数注入了新的血液,那么运动变换观点的渗透,则在一定程度上给欧氏几何提供了更高的数学观点和更新的研究视野。

由此可以说,将图形变换的观点和内容适当地引入我国基础教育的数学课程中,顺应了数学科学和数学教育的发展趋向。

从儿童的生活世界来看,他们已经接触到了大量的物体、图形的平移、旋转或轴对称变换现象。例如,电梯、地铁列车车厢在平行移动,时针、电风扇叶片在旋转,许多动物、建筑物的开头具有对称性。这些现象为儿童学习图形的变换提供了丰富多彩的现实背景。反过来,学习一点图形的变换知识,也有助于儿童更好地观察、认识周围生活中的这些现象。

从儿童的年龄特征与认知特点来看,小学生正处在好奇心浓厚的阶段,通过图形的变换可以引出无数美妙和图案,使数学更生动地与现实世界联系起来,从而诱发学生主动探索奥秘,激励他们用图形变换的观点去审视周围的事物。

总之,通过感知和初步学习图形的变换,不仅有助于学生从运动变化的角度去认识事物,去了解图形之间的联系,从中发展他们的空间观念和几何直觉,而且还有利于学生感受、欣赏图形的美,感受数学与现实世界的联系,有利于他们体验学习“空间与图形”的乐趣,增强对数学的好奇心,激发创造潜能。

当然,充分肯定引进图形与变换这部分内容的作用,并不是说它比其他内容更重要,更不能认为它可以代替其他内容的学习。我认为,这主要是因为学生只学习传统几何内容不能适应时代要求,而作出的必要补充。

二、概念的理解。

以往的中小学数学课程,在平面几何与立体几何中,一般只讨论图形的对称性。图形的平移变换与旋转变换,是在解析几何的坐标变换中讨论的。而在过去的一段时期内,坐标变换又被作为较高要求略去不讲。中等师范学校的数学课程大多也这样处理。教师在职进修大专学历的数学通常直接从空间解析几何或数学分析切入。所以有关平面图形平移与旋转的知识成了多数小学教师数学知识的盲点。因此,尽管整个义务教育阶段都不要求从比较严格的几何变换定义出发来研究变换的性质,但为了搞好这部分内容的教学,教师有必要较透彻地理解图形变换的有关概念。

通俗地讲,所谓平移就是将一个图形按一定的方向移动一定的距离;所谓旋转就是将一个图形绕一个顶点转动一定的角度。这样描述,比较适合学生的认知水平,但对教师来说绝对是不够的。请看一个案例。

在一堂教学“平移与旋转”的公开课上,老师创设了一个玩游乐场的情境。当讨论到摩天轮的运动时,起初同学们都认为是旋转。不料一位同学执著地要求发言,他说:我坐过摩天轮,我坐在上面始终是头朝上、脚朝下,所以我认为是平移,不是旋转。大家一时都愣住了,教师的变对策是让学生小组讨论。这下热闹了,有的同意,认为人的方向没变;有的反对,理由是人在转圈。直到下课都没有搞清楚是平移,是旋转,还是两者都不是。课后,前来观摩的教师也都议论纷纷,多数认为坐在摩天轮上的人与坐舱的运动不是平移,也有少数认为是平移。是否是旋转呢?同样也有两种意见。由此可见教师自身搞清楚概念是十分必要的。

这里,把最主要的概念与性质尽可能以浅显的方式描述如下。

1,什么是变换?

一般地说,所谓变换是指某上集合中符合一定要求的一种对应规律。就图形的变换来讲,因为几何图形都是点的集合,所以图形变换可以通过点的变换来实现。如果一个平面图形的每一个点都对应于该平面内某个新图形的一个点,且新图形中的每一个点只对应于原图形中的一个点,这样的对应就叫做变换。

几何变换中最重要的是全等变换与相似变换。

能够保持图形的形状和大小不变的变换就是全等变换。在全等变换中,原图形任何两点之间的距离都等于新图形中两对应点之间的距离,所以又称为保距变换。

能够保持图形的形状不变,而只改变图形大小的变换就是相似变换。在相似变换中,原图形中所有角的大小都保持不变,所以又称为保角变换。

在小学数学中主要引进了平移变换、旋转变换和轴对称变换,这三种变换都是全等变换。相似变换只是在第二学段中有所渗透,如学习比例尺时两个图形按比例放大或缩小,实际上就是一种相似变换。

2,什么是平移变换、旋转变换和轴对称变换?

先说平移与旋转。如果原图形中任意一个点到新图形中相对应点的连线,方向相同,长度相等,这样的全等变换称为平移变换,简称平移。也就是说,平移的基本特征是,图形移动前后“每一点与它对应点之间的连线互平行(或者重合),并且相等”。显然,确定平移变换需要两个要素:一是方向,二是距离。

如果新图形中的每个点都是由原图形中的一个点绕着一个固定点(叫做旋转中心)转动相等角度得到的,这样的全等变换称为旋转变换,简称旋转。也就是说,旋转的基本特征是图形旋转前后“对应点到旋转中心的距离相等,并且各组对应点与旋转中心连线的夹角都等于旋转的角度”。显然,确定旋转变换需要三个要素:旋转中心、旋转方向与旋转角度。

现在我们可以回答前面的摩天轮座舱问题了。摩天轮在旋转,但上面的座舱及里面的人始终头朝上,脚朝下,是不是在平移呢?我们可以依据平移的基本特征,画出运动过程中任意两个位置上座舱上下问中点的连线(如图1),它们平行并且相等,所以是平移。

那么座舱及里面的人是否在旋转呢?依据旋转的基本特征,画出座舱下部中点与摩天轮旋转中心的连线(如图2),它们的长明显不相等。

明明摩天轮在旋转,而座舱与里面的人却不是在旋转,而是在平移,这是怎么回事呢?原来,摩天轮在带动座舱顺时针旋转的同时,地球的引力使得挂在吊钩上的座舱也在逆时针细微地转动,从而使座舱与里面的人始终保持向上的方向,并且座舱与人上的每个点都移动相同的距离。其实,数学中所说的旋转、平移,主要考察运动开始、终止状态下两个静止图形对应点之间的关系,它与物理学中研究物体“转动”、“平动”的侧重点有所不同。

再说对称。对称是一个许多学科都在使用的名词,在数学上它占有相当重要的地位。与对称有关的概念如对称多项式、对称空间、对称原理等等,都是数学中比较重要的概念。小学数学所讨论的,仅限于图形的对称,而且仅指平面图形关于一条直线的对称。至于图形的其他形形色色的对称,如旋转对称及其特例中心对称等,都不在我们讨论的范围之内。但是当学生提到这类现象时,如平行四边形(中心对称)、电扇叶片(旋转对称)等,教师不应断然否定它们的对称性,只要指出它们不是轴对称图形就行了。

如果连接新图形与原图形中每一组对应点的线段都和同一条直线垂直且被该直线平分,这样的全等变换称为轴对称变换,每组对应点互为对称点,垂直平分对称点所连线段的直线叫做对称轴。也就是说,轴对称的基本特征是,“连接任意一组对应点的线段都被对称轴垂直平分”。显然,确定轴对称变换的关键在于找到对称轴。

构成轴对称的图形可以是一个,通常就叫做轴对称图形(如图3);也可以是两个,通常叫做这两个图形关于某条直线对称(如图4)。

成轴对称的两个图形,任何一个都可以看作是由另一个图形经过轴对称变换后得到的。一个轴对称图形,也可以看作以它的一半为基础,经过轴对称变换而成的。

我们也可以用更通俗的语言,对轴对称图形做出直观的描述:将一个图形对折,如果折痕两边的图形完全重合,这个图形就叫做轴对称图形,折痕(所在直线)叫做对称轴。当然这种描述偏重于图形性质的刻画,运动变换观点的渗透就不那么突出了。

在数学中,为了刻画平移的方向与距离,通常采用有向线段或向量,并放在特定的坐标系内讨论。为了刻画旋转的要素,最简捷的方式就是采用极坐标。因为图形的变换作为点与点之间的一种对应,要精确刻画它是离不开坐标系的。要是把图形的变换看作一种运动,同样需要参照系。事实上,过去把平移与旋转放在解析几何论,主要就是这个原因。在小学数学中,讨论平移和旋转时经常利用格纸,也是这个道理。

3,平移变换、旋转变换与轴对称变换有什么联系?

首先这三种变换都能保持图形的形状、大小不发生变化,这是它们最主要的共同点。其次,如果连续进行两次轴对称变换,在一般情况下:

(1)当两条对称轴平等时,那么这两次轴对称变换的最后结果相当于一次平移变换,平移的方向与对称轴垂直,平移的距离为两条对称同之间距离的2倍。简略地说,两次翻折(对称轴互平行)相当于一次平移。

(2)当两条对称轴相交时,那么这两次轴对称变换的最后结果相当于一次旋转变换,旋转中心为对称轴交点,旋转角度为两条对称轴夹角的2倍。简略地说,两次翻折(对称轴相交)相当于一次旋转。

上面两条结论是针对图形的一般情况来说的。有些特殊的图形,也可能只经过一次轴对称变换,就能达到平移或围转的效果。

例如图5中“带烟囱的房子”经过两次轴对称变换(对称轴平行,且相距4格),相当于一次向右平移8格。图6中“没有烟囱的房子”只要经过一次轴对称变换就相当于平移了。

此外,上面两条结论反过来同样成立。即一次平移变换可以由两次轴对称变换(对称轴互相平行)代替;一次旋转变换,也可以由两次轴对称变换(对称轴相交)替换。它们的运动方式不同,但效果相同。

在小学数学教材中,有些图案可以用不同的变换来生成。例如图7的四叶图案,其中的每一片叶,即可以由相邻的那片叶经过轴对称变换得到,也可以由相邻的叶片旋90°得到,或者由同一直线上的那片叶经过平移得到。

认识三种全等变换之间的联系,也有助于我们理解在数学中研究图形变换的关注点,主要在于变换前后图形的相对位置关系及其对应点的关系。

三、目标的把握。

无论是第一学段还是第二学段,《数学课程标准(实验稿)》都不要求对三种变换做出一般化的描述,更不要求给出定义。

从整体上看,整个小学阶段都只是初步认识图形的变换,教学目标可概括为:积累感性认识,形成初步表象,其外显的表现就是“能识别”、“会画图”。离定性地认识、定量地研究还有一定距离。

因此,学习的主要方式是结合实例,通过观察与动手操作,如折纸、画图等活动来进行。而且还规定了画图的行为条件“在方格纸上”。这是数学的需要(提供参照系),自然也是降低学习难度的需要。

仔细分析不难看出,两个阶段的学习目标,呈现螺旋上升的递进。第一学段从感知实际生活中的图形变换现象开始,学习特殊方向的平移以及直观地认识轴对称图形。第二学段对平移、旋转、轴对称要求略有提高。主要是增加了90°的旋转,确定轴对称图形的对称轴,并能运用所学知识设计图案。同时还要求初步体会图形的相似。

两个阶段学习目标的递进又是细微的。有些光靠课程目标简练语言的描述还显不够。以画轴对称图形为例,第一学段“画出简单图形的轴对称图形”与第二学段“画出一个图形的轴对称图形”有什么区别呢?考虑到小学以认识轴对称图形为主,关于直线对称的两个图形可以出现,但一般不要求学生画。所以,我们可以理解为,前者要求画出的图形比较简单;后者可以是一个有所组合的图形。

更进一步,就是灵活运用平移、对称和旋转在方格纸上设计图案。实现这一目标需要学生综合运用有关知识,还需要学生具有一定的创造力和想象力。由于设计图案的过程是开放的,不同的学生可以有不同的设计、不同的表现。因此这又是一个具有弹性的、能够体现学生学习与个性差异的目标。

四、教材的梳理。

1,对称现象和轴对称图形的感知。

过去的小学数学教材,尽管也有轴对称图形,但一般安排在高年级出现,并局限于轴对称图形的认识。现在则加强了观察生活中的对称现象以及画轴对称图形的内容。有的教材还增加了初步感知镜面对称的内容,使对称现象的认识,从一开始就显得更加丰富、充实。

在第一学段,教材一般都会给出各种生活中常见的对称物体让学生观察,引导学生从对称的视角去重新认识平时经常看到的物体;然后再通过折纸、剪纸等活动,引出轴对称图形。有的教材由折痕引出“对称轴”的概念,但不出轴对称图形的概念(如人教版二年级上),也有的教材两个名词都出现(如北师大版三年级下)。各套教材的共同点就是提供了现实生活中比较常见的一些物体、一些图形、一些交通标志及英语字母,或者一些国家的国旗,让学生观察、判断。提供这些素材的意图,一是激发学生的学习兴趣,体验轴对称图形的多样性及其应用的广泛性,只要注意观察,经常能看到;二是丰富学生的社会知识;三是体验对称美,体会生活中为什么会有大量的对称物体、对称图案,培养对数学的情感。

镜面对称同样是日常生活中的常见现象。在儿童生活里(如照镜子),在童话故事里(如猴子捞月亮),在大自然里(如湖面的倒影),甚至在语文课文里(如水平如镜),都不乏这种现象的实例。这方面的很多实例还很容易引起学生的兴趣和探究的欲望。因此,在第一学段就引入镜面对称,具有一定的认知基础。然而,镜面对称与轴对称既有联系,又有区别。它们的联系在于两者都改变图形的方向,如左右互换。区别在于镜面对称严格地说是一种物体或图形关于某个平面的对称,而不是关于一条直线的对称。上面提到的照镜子,是相对于竖直平面的对称;水面倒影是相对于水平面的对称,这是两种特殊的也是最常见的镜面对称。如果在纸上画一个图形,旁边竖一面镜子,则随着镜子摆放位置、角度的变化,图形(镜面对称的“像”)的变化非常多样,对学生来说可谓变幻莫测。所以,一般只是让学生在照镜子的活动中,通过比较镜子内外人与像的位置关系,初步感受镜面对称的特点。至于“镜面对称”、“平面对称”等名词以及镜面对称的性质,教材通常都不会涉及。

2,轴对称图形的初步认识。

第二学段关于轴对称图形的初步认识,主要内容一是从折纸或观察入手,找到并画出一个图形的对称轴;二是借助方格纸观察并发现轴对称图形的特征,如对应点到对称轴的距离相等,进而根据这个特征,学习在方格纸上画出轴对称图形的另一半,也就是先根据对应点到对称轴的距离,确定图形另一半的顶点,再把对称图形画完整。显然,画出轴对称图形的关键在于掌握对应点的规律。下面两道例题,具有紧密的内在联系。

“图形与变换”的备课与教学——曹培英 ps怎么自由变换图形

前例是后例的基础,例②所要画的图形实际上是一个组合图形,比第一学段的简单图形稍复杂一些。

3,平移、旋转现象的感知。

平移和旋转都是学生在日常生活中经常看到的现象。所以第一学段的教材在首次介绍这两种现象时,都会注意结合学生的生活经验,列举一些学生比较熟悉的事物,如火车车厢、电梯间的运动和螺旋桨、钟摆的运动,等等,唤起学生的联想,使他们重新审视生活里某些常见现象哪些是平移、哪些是旋转。在结合实例初步感知平移和旋转的基础上,体会他们的不同特点,进而学习在方格纸上把简单的图形沿水平方向或竖直方向平移几格。这就达到了本学段的学习目标。

这部分教材的特点是,既不给平移和旋转下定义,也不用语言描述,只要求学生获得物体平移、旋转的感性认识,初步体会生活中的平移现象和旋转现象是很普遍的。

为了提高学生的学习兴趣,让学生在玩中获得感悟,有的教材还运用运动变化原理设计了一些新颖、有趣的“学具”。例如,下面的“拉一拉”、“转一转”,巧妙地蕴含了平移、旋转的特点。

4,平移、旋转的初步认识。

第二学段的教材中,有关平移的初步认识大多没有多少新的内容。因为依据课程标准,学生在第一学段已经学习了利用方格纸沿水平方向或垂直方向平移简单图形。第二学段在方格纸上平移图形也只能沿这两个方向,至多把两个方向的平移综合起来,如先向下平移2格,再向右平移3格,等等。学生有了平移的初步认识,再来学习画平行线就比较方便了。所以有的教材安排了引导学生用平移方法画平行线的内容。这样安排可以发挥学习的正迁移作用。

第二学段有关旋转的初步认识,除了继续联系现实情境让学生进一步体验图形旋转的特点外,主要是学习在方格纸上将图形旋转90°。通常教材的编排是先通过实际情境使学生认识顺时针旋转和逆时针旋转,然后教学怎样在方格纸上把一个简单的图形旋转90°,让学生在动手的过程中体验旋转的方法。

各套教材都会安排的一个课题就是欣赏与设计图案。通常先让学生欣赏一些漂亮的图案,并思考图案的形成,即这些图案是经过怎样的平移、旋转或翻转得到的。然后启发学生尝试用平移、旋转或轴对称的方法做出一些简单的图案。在此基础上,放手让学生灵活应用对称、平移和旋转自己设计、制作图案。教学实践表明,这是一个数学应用与审美、手工融为一体的学习课题,也是一个能够培养学生的创新精神与初中能力结合起来的载体。在小学数学学科中,这样的有效载体为数不多,应当充分用好。

五、教学的策略。

1,注意选取生活中较为典型的例子,让学生感知对称、平移、旋转现象。

我们知道,数学新课程的主要改革趋势之一就是加强数学与儿童生活的联系,关注数学的抽象与数学的应用。因此教学图形变换时大家都想到了联系现实生活,由观察实例切入教学。这一教学策略,符合儿童的思维特点和这部分内容的教学定位。儿童的抽象思维需要具体形象思维与生活经验给予支撑,对感知图形变换这样的抽象概念来说尤其需要。小学阶段关于图形变换的教学定位在于积累感性体验,形成初步认识。因此结合实例展开教学是一条相当重要的教学策略。

从近几年教学实践看,需要注意实例选取与活动设计的典型性。

以平移和旋转为例,生活中有许多物体的运动可以看作平移或旋转。学生在生活中也或多或少接触过平移、旋转现象,这是他们已有的认识基础。但是生活中的平移或旋转现象并不都是数学意义上的平移或旋转。如果选来让学生观察的例子不够典型,就容易屏蔽概念的本质,有时还可能产生歧义,不利于学生形成正确表象。我们来分析下面三种不同的教学活动设计。

活动一:请学生表演健美操的走步与转身动作,作为平移、旋转的观察例子,一人表演,众人观察。

活动二:让学生自己用各种动作表示平移、旋转,同桌互相表演,再全班交流。

活动三:让学生用铅笔头表示交流工具在方格纸上平移或旋转。

以上三种活动都富有童趣,都能激发学生学习热情,后两种活动还做到了人人参与。差异表现在:

实施“活动一”时,学生对健美操走步时的跳跃现象产生了质疑。争论后形成的共识是走步才是平移,但实质上跳跃与走步在这里并没有本质上的区别。

实施“活动二”时,学生大多数能够自觉区分移动与转动,但平移与旋转的要素显示不明显,不少学生以为旋转就是转圈。

实施“活动三”时,平移与旋转的要点反映得比较清楚。特别是旋转,经过讨论,学生在教师指点下得到了以三种不同的旋转中心(铅笔尖、铅笔尾与铅笔中点)进行旋转。

因此,从尽可能地接近数学概念的本质来看,“活动三”更具有数学的典型意义,它有利于我们避开干扰,把学生的注意力集中到平移与旋转变换的数学意义上来。

同样,当我们采用图片来揭示平移、旋转时,也应该尽可能地关注实例的典型性。例如,下面的两幅插图看似相同,实际上却是有区别的。转动老式的水龙头(如图13),其运动是旋转与平移的合成。只要打开水龙头就能发现一圈圈的螺纹。而新式的水龙头是转动阀门,更接近于单纯的旋转,虽说小学生一般发现不了旋转与螺旋的区别,但为了确保教学的科学性,避免给进一步学习造成误导,还是尽可能注意为好。

此外,还有必要因地制宜选择一些当地特有的平移、旋转现象作为补充的实例,使之更贴近本校学生生活中的所见所闻。农村地区的教师,尤其应当注意这一点。

2,注意适当简化、抽象对称、平移、旋转的实例,引导学生感悟它们的数学意义。

在让学生观察生活中的对称、平移、旋转现象时,要注意引导他们对观察对象加以适当的简化、抽象,忽略一些无关紧要的细节,着重从图形变换的角度去观察、思考。

例如,观察对称现象时常常使用天安门、蝴蝶等照片。就实物而言,它们除了关于直线对称,还有其他的对称。因此有必要把它们简化、抽象成图案(平面图形),再来对折、研究。这样既有助于学生感知轴对称图形的特点,也有利于培养学生的数学抽象概括能力。其实,对事物的简化与抽象也是数学建模的第一步,它与数学课改所强调的适度非形式化,是不矛盾的。

类似地,学生观察生活中的平移、旋转现象时,应当引导他们着眼于整体,不被一些细节所纠缠。例如,火车在一段笔直的轨道上行驶,舍去车轮滚动的细节,只看火车车厢的运动,就可以看作平移。又如前面讨论的摩天轮的运动,如果不去考虑座舱,或者把座舱看成一个点,那么毫无疑义摩天轮在旋转。可见,舍去一些与研究主题无关的非本质属性,既是一种能力的培养,也是一种避免无谓纠缠的教学策略。

作为教师还应当理解,物体的运动可以从物理学的角度去观察,考虑它的速度、加速度和位移;也可以从数学的角度去观察,研究运动前后物体的形状、大小有没有改变,位置关系发生了什么变化。数学与物理有着许多天然的联系,如前面分析的摩天论座舱的运动,在物理学中称为“平动”。我们有意识地、不露痕迹地引导学生透过物理运动的现象去观察、研究它的数学意义。从目前的教学实践来看,较为普通的现象是讨论来讨论去只涉及物体的运动,却只字不提运动前后物体的形状、大小不变。这是有失偏颇的。如前所述,平移与旋转都是全等变换,它们共同的实质就是不改变图形的形状与大小。这一特征只要教师稍加提醒,一般学生都能感悟。

3,借助操作活动帮助学生形成初步表象。

加强学生的操作活动,也是提高图形变换教学成效的一个重要策略。这一教学策略“迎合”小学生好动的年龄特征,把“好动”引导到数学学习上来。同时它又切合了教学内容的特点,因为小学生主要是从运动角度去认识平移与旋转的。

教学中除了用好教材提供的一系列活动,如折纸、剪纸,拉一拉、转一转、拼一拼等之外,教师还可以根据学生的特点,自行设计一些活动。例如,让学生用橡皮表示小乌龟,在课桌上按指令移动,体验平移的特点。又如,让学生站立并伸直右臂,向左、右转,获得逆时针旋转90°、顺时针旋转90°的切身感受。再比如,让学生自照镜子,通过观察镜子内外的人的位置的关系感悟镜面对称的特点。知道照镜子时,镜子内外的人上下、前后位置不会发生改变,而左右位置发生了对换。

4,指导学生探索在方格纸上画轴对称图形,或平移、旋转图形的方法。

在方格纸上画图,是一种特殊的操作活动,它在图形变换初步认识的教学过程中,具有不可或缺的作用。因为学会画图是学生必须达成的学习目标,同时它又是反映学生是否理解有关概念,掌握有关特征的现象形式与检测手段。

在方格纸上画出一个图形的另一半,使它成为一个轴对称图形,对小学生来说,是初学时的一个难点。它不同于剪纸,只要对折剪,剪出来的图形必定成轴对称。它要求学生根据图形已知的一半来确定另一半,有的学生会感到困难。

教学时,可以先让学生观察方格纸上的轴对称图形,分析每一组对应点与对称轴的关系,找出规律后,再独立尝试把图画完整。观察表明,有些学生能依据对应点的规律来画,有的则根据图形的对称性,试图一笔一笔画出来。在画的过程中,有的能够发现关键是确定每一笔的两个端点,也会有学生只顾画而忘了思考。课堂上可以通过交流,让他们总结画轴对称图形的经验,得出较为合理的步骤:先定各顶点→再连线成形。

学生基础好较好的班级,也可以先放手让学生独立尝试画出图形的另一半;然后在交流画图经验、体会的过程中,引导学生说出每一组对应的点与对称轴之间的关系,总结出规律性的认识。

学习在方格纸上画平移后的图形时,平移的方向一般学生都比较容易掌握,平移的距离则常有同学出错。针对这一难点,可以通过比较,使学生理解平移几格的含义。如图16,三角形向右平移了3格,还是平移了7格?通过辨析,使学生明确,平移了几格不是看两个图形之间空了几格,而是看对应点或对应线段移动了几格。

也有教师采用了创设情境、激趣设疑的方法展开教学。

师:这是一条小船(如图17),船头停着一只红鸟,船尾停着一只蓝鸟。小船开动了,它是在做什么运动?

生:(齐)平移。

师:对,是平移。这时两只鸟发生了争吵,红鸟说我在船头,我经过的路长一点。蓝鸟说,不对,不对,我在船尾,我经过的路比你长。请同学们讨论一下,两只小鸟说的对吗?怎样才能说肥它们停止争吵。

讨论后进行了交流。

生1:两只鸟经过的路一样长。我可以数给小鸟看,红鸟移动了8格,蓝鸟也移动了8格。

生2:我可以告诉小鸟,船头平移了8格,船尾也平移了8格。所以它们经过的路一样长。

师:如果小鸟停在船上的其他地方,平移了几格呢?

生3:也是8格。

师:请同桌两人互相点一点,假设小鸟停在那里,数一数,平移了几格。

最后,师生共同总结出:平移时,图形上每个点移动的格数都相同。

在此基础上,画出平移后的图形就比较容易了。可以让学生自己尝试,然后交流总结:先按要求平移图形的各个顶点,再连线成形。

第二学段,教学在方格纸上画旋转90°的图形时,可以先让学生用学具,比如三角形,放在方格纸上,按要求转一转,再画下来(如图18);然后讨论三角形上的两条边转动到了哪里,由此逐步引出画图步骤(如图19)。

之所以先“转”再“画”,是由于动手旋转学具比画图容易。学生通过操作,看清楚了旋转后图形的位置,再讨论怎样画,就比较容易找到画图的方法。

5,引导学生验证关于轴对称图形的直观判断。

让小学生从一组平面图形或图案中找出轴对称图形时,他们基本上都是凭直观作出判断。这当然是允许的,因为有概念依据的直观判断能力应该加以培养。但也有必要引导学生对自己的判断作出验证。为了便于验证,教师课前应做好充分准备,把一些容易引起争议的图形或图案画在纸上剪下来备用。验证时学生可以采用折纸的方法,也可以采用尺量的方法,看看对应点到对称轴的距离是否相等。这样,有利于学生从不同角度体会轴对称图形的特征,也有利于把学生的思维逐步引向深入。

学生陈述自己的验证结果时,教师不必强求他们合乎逻辑地说明验证的过程,但应注意倾听,及时纠正他们不合逻辑的地方,使学生初步感受数学的严谨性。比如,可以凭一组对应点到对称轴的距离不相等,判定这个图形不是轴对称图形;但不能只凭一组对应点到对称轴的距离相等,就判定这个图形是轴对称图形。又如,只要找到一条对称轴就能确定这是一个轴对称图形,但不能因为对折一次两边不重合,就断定它不是轴对称图形,应该多进行几次不同的对折,确信不存在对称轴了再下结论。

6,准确把握教学目标。

图形的变换从概念到性质再到应用,内容本身有很大的发展空间。教师必须注意把握教学目标的适切性。前面,我们把这部分内容的学习目标,从可操作、可测量的角度概括为两个外显的学习行为“能识别”与“会画图”。这里“能识别”的范围,是指简单的轴对称图形和典型的、常见的平移、旋转现象;“会画图”的限制条件,一是利用方格纸,二是简单的图形,三是两个特殊方向上的平移和90°的旋转。控制在这样的范围内,一般学生经过努力都能达到要求。

更具体地,教师在确定各课时的教学目标时,除了依据课程标准,从整体上把握教学目标的“度”之外,还应参照课本、教学参考书中的单元教学目标,准确把握本学段的教学重点,并从本班学生的实际情况出发,把教学目标定在学生的最近发展区内。否则,容易加重学生的学习负担,欲速则不达

  

爱华网本文地址 » http://www.aihuau.com/a/25101011/53797.html

更多阅读

《周长的认识》教学设计与反思 周长的认识教学实录

《周长的认识》教学设计与反思【教学内容】北师大版《义务教育课程标准实验教科书·数学》小学三年级上册41页的内容。【教学目标】1.知识与技能:让学生经过自己亲身体验,感悟周长的含义。通过小组合作与探究,用多种适当的方法来求出

李丽平:《父母与孩子之间的爱》教学反思

备课知不足,教后方知困——《父母与孩子之间的爱》教学反思王小槐名师工作室成员李丽平《父母与孩子之间的爱》是人教版高中语文必修第四册第三单元中第二课。这个单元是学习社会科学方面的杂文、随笔的单元。通过学习本单元,将使

《正方体、长方体的认识》教学反思 长方体与正方体的认识

《正方体、长方体的认识》教学反思王亦瑞《长方体和正方体的认识》,是学生由学习平面图形到立体图形的一次过渡,也是学生学习其它立体图形的基础。由平面图形扩展到立体图形,是学生发展空间观念的一次飞跃,教学中应该注重学生的学习体

《小数的意义》教学案例与反思 小数的意义反思

《小数的意义》教学案例与反思一、交流回顾师:在我们数学王国,除了整数外,你还见过什么数?(分数、小数)生活中,你在哪里见过小数?学生课前已经收集了一些带有小数的资料,互相交流。老师也收集了一些,可见在我们生活中随处用到小数。二、展

声明:《“图形与变换”的备课与教学——曹培英 ps怎么自由变换图形》为网友狂刀先生彡分享!如侵犯到您的合法权益请联系我们删除