交流伺服电机和无刷直流伺服区别-AMC推荐 直流无刷伺服电机

伺服就是一个提供闭环反馈信号来控制位置和转速.

伺服在半导体设备中的应用极其广泛,例如在涂胶机,光刻机等设备上均有,下面就关于伺服电机的相关问题作出了整理,希望在今后的工作中能带来帮助.

1.伺服电机为什么不会丢步?

伺服电机驱动器接收电机编码器的反馈信号,并和指令脉冲进行比较,从而构成了一个位置的半闭环控制。所以伺服电机不会出现丢步现象,每一个指令脉冲都可以得到可靠响应。

伺服驱动系统(servosystem)简称伺服系统,是一种以机械位置或角度作为控制对象的自动控制系统,例如数控机床等。使用在伺服系统中的驱动电机要求具有响应速度快、定位准确、转动惯量(使用在机电系统中的伺服电机的转动惯量较大,为了能够和丝杠等机械部件直接相连。伺服电机有一种专门的小惯量电机,为了得到极高的响应速度。但这类电机的过载能力低,当使用在进给伺服系统中时,必须加减速装置。转动惯量反映了系统的加速度特性,在选择伺服电机时,系统的转动惯量不能大于电机转动惯量的3倍。)较大等特点,这类专用的电机称为伺服电机。当然,其基本工作原理和普通的交直流电机没有什么不同。该类电机的专用驱动单元称为伺服驱动单元,有时简称为伺服,一般其内部包括电流、速度和/或位置闭环。

伺服(servo)是一个性能上的名词,一般只要主令和控制结果的近似达到了一定高的程度就能称为伺服,这和机器的结构没有直接的关系。例如伺服系统都没有精确的惯量匹配的范围,这是因为惯量匹配的结果只要不影响控制对象对主令跟随或影响不大就好了,跟具体是3还是3.5没有关系。伺服系统也不一定是电机系统,有的气动系统就称为气动伺服。

伺服系统本质上是一种随动系统。只不过被控量是位移或是其对时间的导数。如果要问什么是随动系统,就是一个系统的输出尽可能以最快,最精确的方式复现输入信号。其衡量的指标有超调量、延迟。

伺服,顾名思义,就是伺候服务,别人叫干什么就干什么,干的越好就伺服水平就越高,在控制领域也一样,执行输入信号越快越真实,其伺服控制系统的水平也越高。

  浅谈交流伺服及其应用

流伺服驱动器和变频器可以说是一对兄弟,都是交流电机的驱动器,按照面世的先后顺序,变频器应该称为哥哥,交流伺服则该称为弟弟。变频器驱动变频电机,也驱动普通交流电机,主要的功能是调节电机的转速。交流伺服驱动器驱动交流伺服电机,其主要特点就是精确快速定位跟踪,进行精确的位置控制。

伺服驱动器的诞生背景[URL=http://photo.blog.sina.com.cn/showpic.html#blogid=6c3c65a00100ndv7&url=http://static15.photo.sina.com.cn/orignal/6c3c65a0g96d3ec34e5be][/URL]

伺服来自英文单词Servo,用来精确地跟随或复现某个过程的反馈控制系统称为伺服系统,又称随动系统。伺服系统最初用于船舶的自动驾驶、火炮控制和指挥仪中,后来逐渐推广到很多领域,特别是自动车床、天线位置控制、导弹和飞船的制导等。
交流伺服电机和无刷直流伺服区别-AMC推荐 直流无刷伺服电机

在20世纪60年代,伺服控制技术开始应用在直流调速中,通过若干分立半导体元器件及其电路板来进行力矩、速度等的闭环控制,通过调整若干个可调电阻、电容、电感元件来实现参数的匹配,调节比较复杂,动态响应也不理想。到了20世纪80年代,随着集成电路、电力电子技术和交流可变速驱动技术的发展,同时借鉴并应用了变频的技术,永磁交流伺服驱动技术有了突出的发展,自从德国MANNESMANN的Rexroth公司的Indramat分部在1978年汉诺威贸易博览会上正式推出MAC永磁交流伺服电动机和驱动系统,这标志着此种新一代交流伺服技术已进入实用化阶段。随后各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品。

交流伺服驱动器的基本工作原理:

交流伺服借鉴并应用了变频的技术,在直流电机的伺服控制的基础上通过变频PWM方式模仿直流电机的控制方式来实现的,也就是说交流伺服电机必然有变频的这一环节。与变频器一样,也是将工频交流电先整流成直流电,然后通过可控制门极的各类晶体管(IGBT,IGCT等)通过载波频率和PWM调节逆变为频率可调的交流电,波形类似于正余弦的脉动电。

伺服驱动器发展了变频技术,在驱动器内部的电流环,速度环和位置环(变频器没有该环)都进行了比一般变频更精确的控制技术和算法运算,主要的一点可以进行精确的位置控制。

现在的交流伺服的控制部分采用数字信号处理器(DSP)作为控制核心,其优点是可以实现比较复杂的控制算法,来完成伺服系统的闭环控制,包括力矩、速度和位置等闭环控制。

交流伺服的应用领域

凡是对位置,速度和力矩的控制精度要求比较高的场合,都可以采用交流伺服驱动。如机床、印刷设备、包装设备、纺织设备、激光加工设备、机器人、电子、制药、金融机具、自动化生产线等。因为伺服多用在定位、速度控制场合,所以伺服又称为运动控制

1、冶金、钢铁—连铸拉坯生产线、铜杆上引连铸机、喷印标记设备、冷连轧机,定长剪切、自动送料、转炉倾动等

2、电力、电缆—水轮机调速器、风力发电机变桨系统、拉丝机、对绞机、高速编织机、卷线机、喷印标记设备等

3、石油、化工—挤压机、胶片传动带、大型空气压缩机、抽油机等

4、化纤和纺织--纺纱机、精纺机、织机、梳棉机、横边机等

5、汽车制造业—发动机零部件生产线、发动机组装生产线,整车装配线、车身焊接线、检测设备等

6、机床制造业—车床、龙门刨、铣床、磨床、机械加工中心、制齿机等

7、铸件制造业—机械手、转炉倾动、模具加工中心等

8、橡塑制造业--塑料压延机、塑料薄膜袋封切机、注塑机、挤出机、成型机、涂塑复合机、拉丝机等

9、电子制造业—印刷电路板(PCB)设备、半导体器件设备(光刻机、晶圆加工机等)、液晶显示器(LCD)设备、整机联装及表面贴装(SMT)设备、激光设备(切割机、雕刻机等)、通用数控设备、机械手等

10、造纸业—纸张传送设备、特种纸造纸机械等

11、食品制造业—原料加工设备、灌装机械、封口机、其他食品包装及印刷设备等

12、制药业—原料加工机械、制剂机械、饮片机械、印刷及包装机械等

13、交通—地铁屏蔽门、电力机车、船舶导航等

14、物流、装卸、搬运—自动仓库、搬运车、立体车库、传动带、机器人、起重设备和搬运设备等

15、建筑—电梯、传送带、自动旋转门、自动开窗等

16、医疗—CT、X光机、核磁共振MRI等

17、试验设备—汽车试验设备、扭矩试验设备等

伺服系统的发展趋势

数字化交流伺服系统的应用越来越广,用户对伺服驱动技术的要求越来越高。总的来说,伺服系统的发展趋势可以概括为以下几个方面:

1.集成化

目前,伺服控制系统的输出器件越来越多地采用开关频率很高的新型功率半导体器件,这种器件将输入隔离、能耗制动、过温、过压、过流保护及故障诊断等功能全部集成于一个不大的模块之中。同一个控制单元,只要通过软件设置系统参数,就可以改变其性能,既可以使用电机本身配置的传感器构成半闭环调节系统,又可以外接外部传感器如位置、速度、力矩传感器等,构成高精度的全闭环调节系统。高度的集成化显著地缩小了整个控制系统的体积。

2.智能化

目前伺服内部控制核心大都采用新型高速微处理器和专用数字信号处理机(DSP),从而实现完全数字化的伺服系统。伺服系统数字化是其实现智能化的前提条件。伺服系统的智能化表现在以下几个方面:系统的所有运行参数都可以通过人机对话的方式由软件来设置;其次它们都具有故障自诊断与分析功能;以及参数自整定的功能等。众所周知,闭环调节系统的参数整定是保证系统性能指标的重要环节,也是需要耗费较多时间与精力的工作。带有自整定功能的伺服单元可以通过几次试运行,自动将系统的参数整定出来,并自动实现其最优化。

3.网络化

伺服系统网络化是综合自动化技术发展的必然趋势,是控制技术、计算机技术和通信技术相结合的产物,现场总线是一种应用于生产现场,在现场设备之间、现场设备和控制装置之间实行双向、串形、多结点的数字通信技术。现场总线现已被广泛应用在伺服系统之间、伺服系统和其它外围设备如人机界面HMI、可编程控制器PLC等信息交互传输。现场总线有如下几个类型FF;ProfiBus、WorldFIP、ControlNet/DeviveNet、CAN等。这些通讯协议都为多轴实时同步控制提供了可能性,也被一些高端伺服驱动器集成进去,从而使伺服系统达到了分布、开放、互联以及高可靠性。

3.简易化

这里所说的“简”不是简单而是精简,是根据用户情况,将用户使用的伺服功能给与强化,使之专而精,而将不使用的一些功能给与精简,从而降低了伺服系统成本,为客户创造更多的收益,且通过精简一些元器件,减少了资源的浪费从而利于环保。这里所说的“易”是指,伺服系统的软件编程及操作是从用户角度出发开发设计,力求简单易行,使用户调试时只需简单

  【光栅与编码器介绍】

 

位置检测装置作为数控机床的重要组成部分,其作用就是检测位移量,并发出反馈信号与数控装置发出的指令信号相比较,若有偏差,经放大后控制执行部件使其向着消除偏差的方向运动,直至偏差等于零为止。为了提高数控机床的加工精度,必须提高检测元件和检测系统的精度。其中以编码器,光栅尺,旋转变压器,测速发电机等比较普遍,下面主要对光栅和编码器进行说明。

光栅,现代光栅测量技术

简要介绍:

将光源、两块长光栅(动尺和定尺)、光电检测器件等组合在一起构成的光栅传感器通常称为光栅尺。光栅尺输出的是电信号,动尺移动一个栅距,输出电信号便变化一个周期,它是通过对信号变化周期的测量来测出动就与定就职相对位移。目前使用的光栅尺的输出信号一般有两种形式,一是相位角相差90度的2路方波信号,二是相位依次相差90度的4路正弦信号。这些信号的空间位置周期为W。下面针对输出方波信号的光栅尺进行了讨论,而对于输出正弦波信号的光栅尺,经过整形可变为方波信号输出。输出方波的光栅尺有A相、B相和Z相三个电信号,A相信号为主信号,B相为副信号,两个信号周期相同,均为W,相位差90o。Z信号可以作为较准信号以消除累积误差。

一、栅式测量系统简述

从上个世纪50年代到70年代栅式测量系统从感应同步器发展到光栅、磁栅、容栅和球栅,这5种测量系统都是将一个栅距周期内的绝对式测量和周期外的增量式测量结合了起来,测量单位不是像激光一样的是光波波长,而是通用的米制(或英制)标尺。它们有各自的优势,相互补充,在竞争中都得到了发展。由于光栅测量系统的综合技术性能优于其他4种,而且制造费用又比感应同步器、磁栅、球栅低,因此光栅发展得最快,技术性能最高,市场占有率最高,产业最大。光栅在栅式测量系统中的占有率已超过80%,光栅长度测量系统的分辨力已覆盖微米级、亚微米级和纳米级,测量速度从60m/min,到480m/min。测量长度从1m、3m达到30m和100m。

二、光栅测量技术发展的回顾

计量光栅技术的基础是莫尔条纹(Moirefringes),1874年由英国物理学家L.Rayleigh首先提出这种图案的工程价值,直到20世纪50年代人们才开始利用光栅的莫尔条纹进行精密测量。1950年德国Heidenhain首创DIADUR复制工艺,也就是在玻璃基板上蒸发镀铬的光刻复制工艺,这才能制造高精度、价廉的光栅刻度尺,光栅计量仪器才能为用户所接受,进入商品市场。1953年英国Ferranti公司提出了一个4相信号系统,可以在一个莫尔条纹周期实现4倍频细分,并能鉴别移动方向,这就是4倍频鉴相技术,是光栅测量系统的基础,并一直广泛应用至今。

德国Heidenhain公司1961年开始开发光栅尺和圆栅编码器,并制造出栅距为4μm(250线/mm)的光栅尺和10000线/转的圆光栅测量系统,能实现1微米和1角秒的测量分辨力。1966年制造出了栅距为20μm(50线/mm)的封闭式直线光栅编码器。在80年代又推出AURODUR工艺,是在钢基材料上制作高反射率的金属线纹反射光栅。并在光栅一个参考标记(零位)的基础上增加了距离编码。在1987年又提出一种新的干涉原理,采用衍射光栅实现纳米级的测量,并允许较宽松的安装。1997年推出用于绝对编码器的EnDat双向串行快速连续接口,使绝对编码器和增量编码器一样很方便的应用于测量系统。现在光栅测量系统已十分完善,应用的领域很广泛,全世界光栅直线传感器的年产量在60万件左右,其中封闭式光栅尺约占85%,开启式光栅尺约占15%。

三、当今采用的光电扫描原理及其产品系列

光栅根据形成莫尔条纹的原理不同分为几何光栅(幅值光栅)和衍射光栅(相位光栅),又可根据光路的不同分为透射光栅和反射光栅。光米级和亚微米级的光栅测量是采用几何光栅,光栅栅距为100μm至20μm远于光源光波波长,衍射现象可以忽略,当两块光栅相对移动时产生低频拍现象形成莫尔条纹,其测量原理称影像原理。纳米级的光栅测量是采用衍射光栅,光栅栅距是8μm或4μm,栅线的宽度与光的波长很接近,则产生衍射和干涉现象形成莫尔条纹,其测量原理称干涉原理。现以Heidenhain产品采用的3种测量原理介绍如下。

1.具有四场扫描的影像测量原理(透射法)

采用垂直入射光学系统均为4相信号系统,是将指示光栅(扫描掩膜)开四个窗口分为4相,每相栅线依次错位四分之一栅距,在接收的4个光电元件上可得到理想的4相信号,这称为具有四场扫描的影像测量原理。Heidenhain的LS系列产品均采用此原理,其栅距为20μm,测量步距为0.5μm,准确度为±10、±5、±3μm三种,最大测量长度3m,载体为玻璃。

2.有准单场扫描的影像测量原理(反射法)

反射标尺光栅是采用40μm栅距的钢带,指示光栅(扫描掩膜)用二个相互交错并有不同衍射性能的相位光栅组成,这样一来,一个扫描场就可以产生相移为四分之一栅距的四个图象,称此原理为准单场扫描的影象测量原理。由于只用一个扫描场,标尺光栅局部的污染使光场强度的变化是均匀的,并对四个光电接收元件的影响是相同的,因此不会影响光栅信号的质量。与此同时,指示光栅和标尺光栅的间隙和间隙公差能大一些。HeidenhainLB和LIDA系列的金属反射光栅就是采用这一原理。LIDA系列开式光栅其栅距为40μm和20μm,测量步距0.1μm,准确度有±5μm、±3μm,测量长度可达30m,最大速度480m/min。LB系列闭式光栅栅距都是40μm,最大速度可达120m/min。

3.单场扫描的干涉测量原理

对于栅距很小的光栅,指示光栅是一个透明的相位光栅,标尺光栅是自身反射的相位光栅,光束是通过双光栅的衍射,在每一级的诸光束相互干涉,就形成了莫尔条纹,其中+1和-1级组干涉条纹是基波条纹,基波条纹变化的周期与光栅的栅距是同步对应的。光调制产生3个相位相差120°的测量信号,由3个光电元件接收,随后又转换成通用的相位差90°的正弦信号.HeidenhainLF、LIP、LIF系列光栅尺是按干涉原理工作,其光栅尺的载体有钢板、钢带、玻璃和玻璃陶瓷,这些系列产品都是亚微米和纳米级的,其中最小分辨力达到1纳米。

在80年代后期栅距为10μm的透射光栅LID351(分辨力为0.05μm)其间隙要求就比较严格为(0.1±0.015)mm。由于采用了新的干涉测量原理对纳米级的衍射光栅安装公差就放得比较宽,例如指示光栅和标尺光栅之间的间隙和平行度都很宽(表1所示)。只有衍射光栅LIP372的栅距是0.512μm,经光学倍频后信号周期为0.128μm,其他栅距均为8μm和4μm,经光学二倍频后得到的信号周期为4μm和2μm,其分辨力为5nm和50nm,系统准确度为±0.5μm和±1μm,速度为30m/min。LIF系列栅距是8μm,分辨力0.1μm,准确度±1μm,速度为72m/min。其载体为温度系数近于0的玻璃陶瓷或温度系数为8ppm/K的玻璃。衍射光栅LF系列是闭式光栅尺,其栅距为8μm,信号周期为4μm,测量分辨力0.1μm,系统准确度±3μm和±2μm,最大速度60m/min,测量长度达到3m,载体采用钢尺和钢膨胀系数(10ppm/K)一样的玻璃。

四、光栅测量系统的几个关键问题

1.测量准确度(精度)

光栅线位移传感器的测量准确度,首先取决于标尺光栅刻线划分度的质量和指示光栅扫描的质量(栅线边沿清晰至关重要),其次才是信号处理电路的质量和指示光栅沿标尺光栅导向的误差。影响光栅尺测量准确度的是在光栅整个测量长度上的位置偏差和光栅一个信号周期内的位置偏差。

光栅尺的准确度(精度)用准确度等级表示,Heidenhain定义为:在任意1m测量长度区段内建立在平均值基础上的位置偏差的最大值Fmax均落在±α(μm)之内,则±α为准确度等级。Heidenhain准确度等级划分为:±0.1、±0.2、±0.5、±1、±2、±3、±5、±10和±15μm。由此可见Heidenhain光栅尺的准确度等级和测量长度无关,这是很高的一个要求,现在还没有见到其他生产厂家能够达到这一水平。

现在Heidenhain玻璃透射光栅和金属反射光栅的栅距只采用20μm和40μm,对衍射光栅栅距采用4μm和8μm,(1nm光栅除外)光学二倍频后信号周期为2μm和4μm。Heidenhain要求开式光栅一个信号周期的位置偏差仅为±1%,闭式光栅仅为±2%,光栅信号周期及位置偏差见表2。

表2

--------------------------------------------------------------------

光栅类别信号周期(μm)一个信号周期内的位置偏差(μm)

--------------------------------------------------------------------

几何光栅20和40开启式光栅尺±1%,即±0.2~±0.4

封闭式光栅尺±2%,即±0.4~±0.8

--------------------------------------------------------------------

衍射光栅2和4开启式光栅尺±1%,即±0.02~±0.04

封闭式光栅尺±2%,即±0.02~±0.08

--------------------------------------------------------------------

2.信号的处理及栅距的细分

光栅的测量是将一个周期内的绝对式测量和周期外的增量式测量结合在一起,也就是说在栅距的一个周期内将栅距细分后进行绝对的测量,超过周期的量程则用连续的增量式测量。为了保证测量的精度,除了对光栅的刻划质量和运动精度有要求外,还必须对光栅的莫尔条纹信号的质量有要求,因为这影响电子细分的精度,也就是影响光栅测量信号的细分数(倍频数)和测量分辨力(测量步距)。栅距的细分数和准确性也影响光栅测量系统的准确度和测量步距。对莫尔条纹信号质量的要求主要是信号的正弦性和正交性要好;信号直流电平漂移要小。对读数头中的光电转换电路和后续的数字化插补电路要求频率特性好,才能保证测量速度大。

Heidenhain有专门为光栅传感器和CNC相联结设计了光栅倍频器,也就是将光栅传感器输出的正弦信号(一个周期是一个栅距)进行插补和数字化处理后给出相位相差90°的方波,其细分数(倍频数)有5、10、25、50、100、200和400,再考虑到数控系统的4倍频后对栅距的细分数有20、40、100、200、400、800和1600,能实现测量步距从1nm到5μm,倍频数选择取决于光栅信号一个栅距周期的质量。随着倍频数的增加光栅传感器的输出频率要下降,倍频器的倍频细分数和输入频率的关系见表3。

表3

--------------------------------------------------------------------

倍频细分数02102550100200400

--------------------------------------------------------------------

输入频率kHz600500200100502512.56.25

--------------------------------------------------------------------

选择不同的倍频数可以得到不同的测量步距。在Heidenhain的数显表中可以设置15种之多的倍频数,最高频数可达1024,即1、2、4、5、10、20、40、50、64、80、100、128、200、400、1024。在微机上用的数量卡最大倍频数可到4096。

3.光栅的参考标记和绝对座标

(1)光栅绝对位置的确立

光栅是增量测量,光栅尺的绝对位置是利用参考标记(零位)确定。参考标记信号的宽度和光栅一个栅距的信号周期一致,经后续电路处理后参考信号的脉冲宽度和系统一个测量步距一致。为了缩短回零位的距离,Heidenhain设计了在测量全长内按距离编码的参考标记,每当经过两个参考标记后就可以确定光栅尺的绝对位置,例如栅距为4μm和20μm的光栅尺扫描单元相对于标尺移动20mm后就可确定绝对位置,栅距为40μm的光栅尺要移动80mm才能确定绝对位置。

(2)绝对坐标传感器

为了在任何时刻测量到绝对位置,Heidenhain设计制造了LC系列绝对光栅尺,它是用七个增量码道得到绝对位置,每个码道是不同的,刻线最细码道的栅距有两种,一种是16μm,另一种是20μm,其分辨力都可为0.1μm,准确度±3μm。测量长度可达3m,最大速度120m/min。它所采用的是光电扫描原理和常用的透射光栅一样,是具有四场扫描的影像测量原理。

4.光栅的载体和热性能

光栅尺是在20°±0.1℃环境中制造,光栅的热性能直接影响到测量精度,在使用上光栅尺的热性能最好和测量的对象的热性能一致。考虑到不同的使用环境,Heidenhain光栅尺刻度的载体具有不同的热膨胀系数。现用的材料有玻璃、钢和零膨胀的玻璃陶瓷。普通玻璃的膨胀系数为8ppm/K,钢为10ppm/K,现在Heidenhain已采用了和钢一样膨胀系数的玻璃。这些材料对振动、冲击不敏感,具有确定的热特性,并对气压和湿度的变化也不会有影响。对测量长度在3m以下的光栅尺载体材料都是用玻璃、玻璃陶瓷和钢,超过3m以上则用钢带。通过对标尺载体所用材料和相应结构的选择,使光栅尺与被测对象的热性能有最佳的匹配。

5.信号处理

此外在信号处理、测量电路中,用到了触发器、计数器等多种数字集成电路,测量分辨率为光栅栅距W。目前,计量用光栅尺的刻线一般为每毫米50~250线,对应的栅距W为20~4μm,在精密测量中往往不能满足要求,需要进行曲细分。如果同时考虑A、90度信号上升沿和下降沿的各种情况,就可以实现信号四细分,其主要电路有:细分辨向、计数和接口电路等,以上功能可以由通用数字集成电路来完成。

6.西门子参数设置

30200是编码器的数量;31000=1表示是光栅尺。

30240{0}=130240{1}=0

注意:电机编码器不能屏蔽,否则没法动了。

如果想让电机编码器做位置反馈,直接置位DB3*.DBX1.5就行,因为光栅尺一般都作为第二反馈,即用DB3*.DBX1.6激活。但如果DBX1.5和DBX1.6同时生效,第一测量系统起作用。

但是上面做法的前提是PLC程序中没有处理DBX1.5,否则你无法置位。

脉冲编码器介绍

我们目前生产和使用的数控机床大多采用的是半闭环控制方式,大多数的系统生产厂家均将位置编码器内置于驱动电机端部,间接测量执行部件的实际位置或位移。

1、脉冲编码器概念

脉冲编码器是一种光学式位置检测元件,编码盘直接装在电机的旋转轴上,以测出轴的旋转角度位置和速度变化,其输出信号为电脉冲。

这种检测方式的特点是:非接触式的,无摩擦和磨损,驱动力矩小,响应速度快。缺点是抗污染能力差,容易损坏。按其编码化方式,可分为增量式和绝对值式。

1)增量式编码器

增量式编码器工作原理

增量式编码器工作原理如上图a所示。在图中,E为等节距的辐射状透光窄缝圆盘,"Q1、"Q2

为光源,Da、Db、Dc为光电元件(光敏二极管或光电池),Da与Db错开90度相位角安装。当圆盘旋转一个节距时,在光源照射下,光电元件Da,Db上得到图b(所示的光电波形输出,A,B信号为具有90度相位差的正弦波,这组信号经放大器放大与整形,得到图c)的输出方波,A相比B相导前90度,其电压幅值为5V。设A相导前B相时为正方向旋转,则B相导前A相时即为负方向旋转,利用A相与B相的相位关系可以判别编码器的旋转方向,C相产生的脉冲为基准脉冲,又称零点脉冲,它是轴旋转一周在固定位置上产生一个脉冲,在数控车床上切削螺纹时,可将它作为车刀进刀点和退刀点的信号使用,以保证切削的螺纹不会乱扣。在加工中心上可作为主轴准停信号,以保证主轴和刀库间的可靠换刀。AB相脉冲信号经频率———电压变换后,得到与转轴转速成比例的电压信号,便可测得速度值及位移量。

2)绝对值式编码器

绝对值式编码器是通过读取编码盘上的图案来表示数值的。下图所示的为葛莱编码盘,图中空白的部分透光,用“0”表示;涂黑的部分不透光,用“1”表示。此码盘共有四环,由里向外每一环配置的光电变换器对应2的3次方,2的2次方,2的1次方,2的0次方。图中的码盘共分为16份,要提高检测精度,可多分。

葛莱编码盘

3)增量式编码器和绝对值式编码器比较

在实际应用中,通过比较,发现增量式结构简单,成本低;但其移距是由测量信号计数读出的,基点特别重要,每次开机或因故停机后,都要重回参考点;并且排除故障后不能再找到事故前的正确位置,而且由于干扰易产生计数误差。这种增量式编码器多用于精度要求不是很高的经济型数控机床。而绝对值式的结构复杂,成本高;但其坐标值直接从码盘中读出,不会有累积误差;编码器本身具有机械式存储功能(需要外加电池),即使因停电或其它原因造成坐标值清除,通电后,仍可找到原绝对坐标位置。这种编码器多用于精度和速度要求较高的数控机床,特别是控制轴数多达四、五个的加工中心机床上。

2、全闭环位置检测装置

还有一种全闭环控制方式,可获得比半闭环更高的位移精度。这种进给伺服系统的位置检测装置安装在进给系统末端的执行部件上,实测它的位置或位移量,而安装在驱动电机端部的编码器则作为测速元件,构成速度环。位置检测装置多选用光栅尺,位置信号的检出是由光栅读数头完成,标尺光栅(长光栅)和指示光栅(短光栅)分别安装在机床的移动部件及固定部件上,两者相互平行,它们之间保持0.05或0.1的间隙。当标尺光栅沿指示光栅连续移动时,光电元件所感应的光电流变化规律近似正弦波形,将此正弦信号经放大、整形、微分线路处理后,转换为数字脉冲信号。标尺光栅移动一个栅距产生一个计数脉冲,用计数器来计算脉冲数,则可测得机床工作台的位移量。采用倍频的方法可提高光栅的分辨精度。光栅尺的特点是测量精度高,而且精度可以长期保持;但对工作环境的要求较高,并且测量装置要和工作台等长,不便于在大型数控机床上使用。光栅尺多用于高精度的中、小型数控机床上。因全闭环控制系统将机械传动机构包含在系统之内,机械传动机构的固有频率、阻尼、间隙等将成为系统不稳定的因素,所以全闭环系统在设计及调试上较困难,不及半闭环应用的广泛,这里不再细说了。

附:伺服电机和主轴电机的区别

转子结构不一样,主轴电机的转子与鼠笼电机的转子一样,由于没有磁极,因而不需要相应的检测转子位置的信号,1PH7主轴电机的编码器型号为ERN1381,1FT6/1FK6电机的编码器型号为ERN1387,其主要区别就是ERN1381没有附加的C相和D相信号,故更换编码器不需要重新调整,ERN1387可以用在1PH电机上,但反过来ERN1381不能用在进给电机上.

主轴电机一般功率很大,因而电机的结构对散热要求更高.

工作范围不一样,伺服电机工作在最低转速和额定转速之间的恒转矩区,而主轴电机工作在额定转速和最高转速之间的恒功率区,由于要达到很大的调速范围,主轴电机的额定转速一般都很低

ERN1387编码器更换方法

1.卸开电机后盖,编码器的后盖

2.松开编码器安装螺丝

3.旋转电机转子轴,使编码器转子上的标志和编码器壳上的标志重合

4.卸下编码器,注意在装卸的时候尽量使用特制螺丝顶出来,免得损坏编码器

5.旋转新的编码器,使编码器的两个标志重合

6.按以上相反的顺序安装编码器

注意:在安装编码器的过程中,要保证电机的转子不同,否则会失去转子的相对位置,如果失去了相对位置,老电机则需要用示波器来调整编码器的安装位置,新电机则可以依据电机转子轴上的标志来判断调整编码器的安装位置时,即可以机械调整,也可以调整驱动参数MD1016来设置一个偏置值,但该方法仅能用在840D上,通过这个方法调整的电机换到别的机床上使用可能会因为驱动参数的不同而不能正常使用

  

爱华网本文地址 » http://www.aihuau.com/a/25101011/71452.html

更多阅读

小米3和魅族mx3哪个好,区别在那? 小米3和魅族mx3评测

小米3和魅族mx3哪个好,区别在那?——简介魅族在9月2号发布了魅族mx3,随后小米也推出了新机小米3.。小米3和魅族mx3哪个好?每当这两家手机厂商推出新品之后很多人就会那这两家产品做比较。这里就来为大家来对比小米3和魅族mx3区别,这样自

泡沫型洗面奶和无泡沫型洗面奶区别与推荐 无泡沫洗面奶

泡沫型洗面奶和无泡沫型洗面奶区别与推荐——简介 洁面作为护肤的第一步,只有做足了洁面工夫,才会让很多肌肤问题的解决事半功倍,甚或洁面本身就是其解决之道哦。然而我们每个人的肌肤状态各不同,对于洗面奶的需求也是不同的。需要清洁

蓝牙4.0版和3.0版和2.1版有什么区别,怎么选 蓝牙3.0和4.0 鼠标

蓝牙4.0版和3.0版和2.1版有什么区别,怎么选——简介 蓝牙目前的普及程度已不亚于手机,比如蓝牙耳机、蓝牙音箱,支持蓝牙更是智能手机的入门标配,但是目前市场上蓝牙版本众多,那么我们在实际购买时怎么选购呢?下面介绍一下他们的区别以及怎

声明:《交流伺服电机和无刷直流伺服区别-AMC推荐 直流无刷伺服电机》为网友有暗香盈袖分享!如侵犯到您的合法权益请联系我们删除