标准差与协方差 方差和均值的关系

标准差

百科名片

标准差(Standard Deviation) ,也称均方差(mean square error),是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。

目录

简介 标准差的意义 离散度 极差 离均差的平方和 方差(S2) 标准差(SD) 变异系数(CV)

解释 标准差与标准误的区别 标准误

Excel函数 外汇术语 样本标准差 应用实例 选基金 股市分析中 标准差在确定企业最优资本结构中的应用

展开

简介 标准差的意义 离散度 极差 离均差的平方和 方差(S2) 标准差(SD) 变异系数(CV)

解释 标准差与标准误的区别 标准误

Excel函数 外汇术语 样本标准差 应用实例 选基金 股市分析中 标准差在确定企业最优资本结构中的应用

展开

编辑本段简介

标准差(Standard Deviation),在概率统计中最常使用作为统计分布程度(statistical dispersion)上的测量。标准差定义为方差的算术平方根,反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:

为非负数值, 与测量资料具有相同单位。 一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。

标准计算公式

假设有一组数值X1,X2,X3,......Xn(皆为实数),其平均值为μ,公式如图1. 图1

标准差也被称为标准偏差,或者实验标准差,公式如图2。 图2

简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。

例如,两组数的集合 {0, 5, 9, 14} 和 {5, 6, 8, 9} 其平均值都是 7 ,但第二个集合具有较小的标准差。

标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。

标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越细,代表回报较为稳定,风险亦较小。

例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.078分,B组的标准差为2.16分(此数据是在R统计软件中运行获得),说明A组学生之间的差距要比B组学生之间的差距大得多。

如是总体,标准差公式根号内除以n  如是样本,标准差公式根号内除以(n-1)  因为我们大量接触的是样本,所以普遍使用根号内除以(n-1)

公式意义

所有数减去其平均值的平方和,所得结果除以该组数之个数(或个数减一,即变异数),再把所得值开根号,所得之数就是这组数据的标准差。

深蓝区域是距平均值小于一个标准差之内的数值范围。在正态分布中,此范围所占比率为全部数值之 68% 。 根据正态分布,两个标准差之内(深蓝,蓝)的比率合起来为 95% 。根据正态分布,三个标准差之内(深蓝,蓝,浅蓝)的比率合起来为 99% 。

正态分布图

编辑本段标准差的意义

标准计算公式 假设有一组数值(皆为实数),其平均值为:

. 此组数值的标准差为:

样本标准差

在真实世界中,除非在某些特殊情况下,找到一个总体的真实的标准差是不现实的。大多数情况下,总体标准差是通过随机抽取一定量的样本并计算样本标准差估计的。

从一大组数值当中取出一样本数值组合 ,常定义其样本标准差:

样本方差 s是对总体方差σ的无偏估计。 s中分母为 n- 1 是因为 的自由度为 n 1 ,这是由于存在约束条件 。

这里示范如何计算一组数的标准差。例如一群儿童年龄的数值为 { 5, 6, 8, 9 } :

第一步,计算平均值



第二步,计算标准差



编辑本段离散度

标准差是反应一组数据离散程度最常用的一种量化形式,是表示精确度的重要指标。说起标准差首先得搞清楚它出现的目的。我们使用方法去检测它,但检测方法总是有误差的,所以检测值并不是其真实值。检测值与真实值之间的差距就是评价检测方法最有决定性的指标。但是真实值 是多少,不得而知。因此怎样量化检测方法的准确性就成了难题。这也是临床工作质控的目的:保证每批实验结果的准确可靠。

虽然样本的真实值是不可能知道的,但是每个样本总是会有一个真实值的,不管它究竟是多少。可以想象,一个好的检测方法,其检测值应该很紧密的分散在真实值周围。如果不紧密,与真实值的距离就会大,准确性当然也就不好了,不可能想象离散度大的方法,会测出准确的结果。因此,离散度是评价方法的好坏的 最重要也是最基本的指标。

一组数据怎样去评价和量化它的离散度呢?人们使用了很多种方法: 极差

最直接也是最简单的方法,即最大值-最小值(也就是极差)来评价一组数据的离散度。这一方法在日常生活中最为常见,比如比赛中去掉最高最低分就是极差的具体应用。 离均差的平方和

由于误差的不可控性,因此只由两个数据来评判一组数据是不科学的。所以人们在要求更高的领域不使用极差来评判。其实,离散度就是数据偏离平均值的程度。因此将数据与均值之差(我们叫它离均差)加起来就能反映出一个准确的离散程度。和越大离散度也就越大。

但是由于偶然误差是成正态分布的,离均差有正有负,对于大样本离均差的代数和为零的。为了避免正负问题,在数学有上有两种方法:一种是取绝对 值,也就是常说的离均差绝对值之和。而为了避免符号问题,数学上最常用的是另一种方法--平方,这样就都成了非负数。因此,离均差的平方和成了评价离散度 一个指标。 方差(S2)

由于离均差的平方和与样本个数有关,只能反应相同样本的离散度,而实际工作中做比较很难做到相同的样本,因此为了消除样本个数的影响,增加可比性,将标准差求平均值,这就是我们所说的方差成了评价离散度的较好指标。

样本量越大越能反映真实的情况,而算数均值却完全忽略了这个问题,对此统计学上早有考虑,在统计学中样本的均差多是除以自由度(n-1),它的意思是样本能自由选择的程度。当选到只剩一个时,它不可能再有自由了,所以自由度是n-1。 标准差(SD)

由于方差是数据的平方,与检测值本身相差太大,人们难以直观的衡量,所以常用方差开根号换算回来这就是我们要说的标准差。

在统计学中样本的均差多是除以自由度(n-1),它是意思是样本能自由选择的程度。当选到只剩一个时,它不可能再有自由了,所以自由度是n-1。 变异系数(CV)

标准差能很客观准确的反映一组数据的离散程度,但是对于不同的检目,或同一项目不同的样本,标准差就缺乏可比性了,因此对于方法学评价来说又引入了变异系数CV。

一组数据的平均值及标准差常常同时做为参考的依据。在直觉上,如果数值的中心以平均值来考虑,则标准差为统计分布之一“自然”的测量。

定义公式:其中N应为n-1,即自由度

标准差与平均值定义公式

1、方差s^2=[(x1-x)^2+(x2-x)^2+......(xn-x)^2]/(n) (x为平均数)

2、标准差=方差的算术平方根

error bar。在实验中单次测量总是难免会产生误差,为此我们经常测量多次,然后用测量值的平均值表示测量的量,并用误差条来表征数据的分布,其中误差条的高度为±标准误。这里即标准差standard deviation和标准误standard error 的计算公式分别为

标准差

标准误

编辑本段解释

从几何学的角度出发,标准差可以理解为一个从 n 维空间的一个点到一条直线的距离的函数。举一个简单的例子,一组数据中有3个值,X1,X2,X3。它们可以在3维空间中确定一个点 P = (X1,X2,X3)。想像一条通过原点的直线 。如果这组数据中的3个值都相等,则点 P 就是直线 L 上的一个点,P 到 L 的距离为0, 所以标准差也为0。若这3个值不都相等,过点 P 作垂线 PR 垂直于 L,PR 交 L 于点 R,则 R 的坐标为这3个值的平均数: 公式

运用一些代数知识,不难发现点 P 与点 R 之间的距离(也就是点 P 到直线 L 的距离)是。在 n 维空间中,这个规律同样适用,把3换成 n 就可以了。

编辑本段标准差与标准误的区别



标准差与标准误都是心理统计学的内容,两者不但在字面上比较相近,而且两者都是表示距离某一个标准值或中间值的离散程度,即都表示变异程度,但是两者是有着较大的区别的。

首先要从统计抽样的方面说起。现实生活或者调查研究中,我们常常无法对某类欲进行调查的目标群体的所有成员都加以施测,而只能够在所有成员(即样本)中抽取一些成员出来进行调查,然后利用统计原理和方法对所得数据进行分析,分析出来的数据结果就是样本的结果,然后用样本结果推断总体的情况。一个总体可以抽取出多个样本,所抽取的样本越多,其样本均值就越接近总体数据的平均值。

表示的就是样本数据的离散程度。标准差就是样本平均数方差的开平方,标准差通常是相对于样本数据的平均值而定的,通常用M±SD来表示,表示样本某个数据观察值相距平均值有多远。从这里可以看到,标准差受到极值的影响。标准差越小,表明数据越聚集;标准差越大,表明数据越离散。标准差的大小因测验而定,如果一个测验是学术测验,标准差大,表示学生分数的离散程度大,更能够测量出学生的学业水平;如果一个测验测量的是某种心理品质,标准差小,表明所编写的题目是同质的,这时候的标准差小的更好。标准差与正态分布有密切联系:在正态分布中,1个标准差等于正态分布下曲线的68.26%的面积,1.96个标准差等于95%的面积。这在测验分数等值上有重要作用。 标准误

表示的是抽样的误差。因为从一个总体中可以抽取出无数多种样本,每一个样本的数据都是对总体的数据的估计。标准误代表的就是当前的样本对总体数据的估计,标准误代表的就是样本均数与总体均数的相对误差。标准误是由样本的标准差除以样本容量的开平方来计算的。从这里可以看到,标准误更大的是受到样本容量的影响。样本容量越大,标准误越小,那么抽样误差就越小,就表明所抽取的样本能够较好地代表总体。

编辑本段Excel函数

Excel中有STDEV、STDEVP;STDEVA,STDEVPA四个函数,分别表示样本标准差、总体标准差;包含逻辑值运算的样本标准差、包含逻辑值运算的总体标准差(excel用的是“标准偏差”字样)。

在计算方法上的差异是:样本标准差=(样本方差/(数据个数-1))^2;总体标准差=(总体方差/(数据个数))^2。

函数的excel分解:

(1)stdev()函数可以分解为(假设样本数据为A1:E10这样一个矩阵):

stdev(A1:E10)=sqrt(DEVSQ(A1:E10)/(COUNT(A1:E10)-1))

(2)stdevp()函数可以分解为(假设总体数据为A1:E10这样一个矩阵):

stdev(A1:E10)=sqrt(DEVSQ(A1:E10)/(COUNT(A1:E10)))

同样的道理stdeva()与stdevpa()也有同样的分解方法。

编辑本段外汇术语

标准差指统计上用于衡量一组数值中某一数值与其平均值差异程度的指标。标准差被用来评估价格可能的变化或波动程度。标准差越大,价格波动的范围就越广,股票等金融工具表现的波动就越大。

在excel中调用函数

“STDEV“

估算样本的标准偏差。标准偏差反映相对于平均值 (mean) 的离散程度。

编辑本段样本标准差

在真实世界中,除非在某些特殊情况下,不然找到一个总体的真实的标准差是不现实的。大多数情况下,总体标准差是通过随机抽取一定量的样本并计算样本标准差估计的。

编辑本段应用实例

选基金

在投资基金上,一般人比较重视的是业绩,但往往买进了 基金的算法

近期业绩表现最佳的基金之后,基金表现反而不如预期,这是因为所选基金波动度太大,没有稳定的表现。

衡量基金波动程度的工具就是标准差(Standard Deviation)。标准差是指基金可能的变动程度。标准差越大,基金未来净值可能变动的程度就越大,稳定度就越小,风险就越高。

比方说,一年期标准差是30%的基金,表示这类基金的净值在一年内可能上涨30%,但也可能下跌30%。因此,如果有两只收益率相同的基金,投资人应该选择标准差较小的基金(承受较小的风险得到相同的收益),如果有两只相同标准差的基金,则应该选择收益较高的基金(承受相同的风险,但是收益更高)。建议投资人同时将收益和风险计入,以此来判断基金。例如,A基金二年期的收益率为36%,标准差为18%;B基金二年期收益率为24%,标准差为8%,从数据上看,A基金的收益高于B基金,但同时风险也大于B基金。A基金的"每单位风险收益率"为2(0.36/0.18),而B基金为3(0.24/0.08)。因此,原先仅仅以收益评价是A基金较优,但是经过标准差即风险因素调整后,B基金反而更为优异。

另外,标准差也可以用来判断基金属性。据晨星统计,今年以来股票基金的平均标准差为5.14,积配型基金的平均标准差为5.04;保守配置型基金的平均标准差为4.86;普通债券基金平均标准差为2.91;货币基金平均标准差则为0.19;由此可见,越是积极型的基金,标准差越大;而如果投资人持有的基金标准差高于平均值,则表示风险较高,投资人不妨在观赏奥运比赛的同时,也检视一下手中的基金。 股市分析中

股票价格的波动是股票市场风险的表现,因此股票市场风险分析就是对股票市场价格波动进行分析。波动性代表了未来价格取值的不确定性,这种不确定性一般用方差或标准差来刻画(Markowitz,1952)。下表是中国和美国部分时段的股票统计指标,其中中国证券市场的数据由“钱龙”软件下载,美国证券市场的数据取自ECI的“World Stock Exchange Data Disk”。 表2股票统计指标

年份业绩表现波动率

上证综指标准普尔指数上证综指标准普尔指数

1996110.9316.460.2376O.0573

1997-0.1331.01O.1188O.0836

19988.9426.67O.0565O.0676

199917.2419.53O.15120.0433

200043.86-10.140.0970.0421

2001-15.34-13.04O.0902O.0732

2002-20.82-23.37O.0582O.1091

通过计算可以得到:

上证综指业绩期望值≈(110.93-0.13+8.94+17.24+43.86-15.34-20.82)/7=20.67

上证波动率期望值≈0.1156

标准普尔业绩期望值≈6.7214

标准普尔波动率期望值≈0.0680

而标准差的计算公式则根据公 分析图2

式(2)计算:

上证综指的业绩标准差

上证波动率标准差≈0.0632

标准普尔指数业绩标准差≈21.71

标准普尔波动率标准差≈0.02365

因为标准差是绝对值,不能通过标准差对中美直接进行对比,而变异系数可以直接比较。计算可得:

上证业绩变异系数≈45.2457/20.67≈2.1889

上证波动率变异系数≈0.0632/0.1156≈0.5467

标准普尔业绩变异系数≈21.71/6.7214≈3.2299

标准普尔波动率变异系数≈0.02365/0.0680≈0.3478

通过比较可以看出上证波动率变异系数要大于标准普尔波动率变异系数,说明长期来讲中国股市稳定性相对较差,还是一个不太成熟的股票市场。 标准差在确定企业最优资本结构中的应用

资本结构指的是企业各种资金来源的比例关系,是企业筹资活动的结果。最优资本结构是指能使企业资本成本最低且企业价值最大的资本结构;产权比率,即借入资本与自有资本的构成比例,是反映企业资本结构的重要变量。企业的资产由债务性资金和权益性资金组成,但其 分析图

风险等级和收益率各不相同。根据投资组合理论,投资的多样化可以分散掉一定的风险,因此资金提供者需要决定投资于债务性资金和权益性资金的比例。以便在权衡风险和收益的情况下保证其利益的最大化。

理论探索而外部资金提供者利益的最大化也就是企业价值的最大化,这一投资比例对于企业融资而言也就是企业的最优资本结构比例。

假定某企业的资金通过发行债券和股票两种方式获得,并且都属于风险性资产。σ其中债券的收益率为rD,风险通过标准差σD来衡量;股票的收益率为rE,风险为σE;股票和债券的相关系数为pDE,协方差为COV(rD,rE);债券所占的比重为wD,股票所占比重为WE(WD + WE = 1)。根据投资组合理论,企业外部投资者对该企业投资所获的期望收益率为E(rp) = WDE(rD) + wEE(rE),方差为 方差

1、企业债务性资金和权益性资金完全正相关,即相关系数pDE为1。企业外部投资者获得的期望收益率为E(rp) = wDE(rD) + wEE(rE),风险标准差为σ = wDσD + wEσE,也就是组合的标准差等于各个部分标准差的加权平均值,通过投资组合不可能分散掉投资风险。根据投资组合理论,投资组合的不同比例对于投资者而言是无差异的。

2、企业债务性资金和权益性资金完全负相关,即其相关系数为-1。投资者获得的报酬率的期望值及其方差分别为。根据投资组合理论,只有当投资比例大于σE / (σD + σE)时其投资组合才是有效的。对于企业筹资而言,也即企业的权益性资金的比例大干σE / (σD + σE),企业的筹资比例才是有效的,而且当组合比例为σE / (σD + σE)时,企业的筹资组合风险为零。

3、企业债务性资金和权益性资金的相关系数大于-1小于1。理论上,一个企业的两种筹资方式之间的相关程度较高,一方面两种筹资方式都承担系统风险,另一方面它们也承担相同的公司风险。因此从实践来看,企业的不同筹资方式间的相关程度不可能是完全的正相关和负相关。对于一个企业而言,债务性资金对企业有固定的要求权,权益性资金对企业只有剩余要求权,因此债务性资金的波动不可能像权益性资金的波动那么大。同时企业的风险会同时影响企业的债务性资金和权益性资金,因此企业的债务性资金和权益性资金的相关系数不可能为负数。企业不同的筹资方式间的相关系数一般在0-1之间。

那么究竟在什么比例下企业的价值才会达到最大呢?根据投资组合理论,当E(r1) > E(r2),且 方差3

时,才能出现r1,优于r2。可见,决定企业资本结构的直接因素主要是不同筹资方式的收益率和风险以及它们之间的相关系数。

协方差分析

目录

定义:(analysis of covariance) 意义 方法

编辑本段定义:(analysis of covariance)

协方差是关于如何调节协变量对因变量的影响效应,从而更加有效地分析实验处理效应的一种统计技术,也是对实验进行统计控制的一种综合方差分析和回归分析的方法。

编辑本段意义

标准差与协方差 方差和均值的关系
当研究者知道有些协变量会影响因变量,却不能够控制和不感兴趣时(当研究学习时间对学习绩效的影响,学生原来的学习基础、智力学习兴趣就是协变量),可以在实验处理前予以观测,然后在统计时运用协方差分析来处理。

将协变量对因变量的影响从自变量中分离出去,可以进一步提高实验精确度和统计检验灵敏度。

方差是用来度量单个变量 “自身变异”大小的总体参数,方差越大,该变量的变异越大;

协方差是用来度量两个变量之间 “协同变异”大小的总体参数,即二个变量相互影响大小的参数,协方差的绝对值越大,二个变量相互影响越大。

对于仅涉及单个变量的试验资料,由于其总变异仅为“自身变异”(如单因素完全随机设计试验资料,“自身变异”是指由处理和随机误差所引起的变异),因而可以用方差分析法进行分析;

对于涉及两个变量的试验资料,由于每个变量的总变异既包含了“自身变异”又包含了“协同变异”(是指由另一个变量所引起的变异),须采用协方差分析法来进行分析,才能得到正确结论。

编辑本段方法

(一)回归模型的协方差分析

如果那些不能很好地进行试验控制的因素是可量测的,且又和试验结果之间存在直线回归关系,就可利用这种直线回归关系将各处理的观测值都矫正到初始条件相同时的结果,使得处理间的比较能在相同基础上进行,而得出正确结论。这一做法在统计上称为统计控制。

这时所进行的协方差分析是将回归分析和方差分析结合起来的一种统计分析方法,这种协方差分析称为回归模型的协方差分析。

(二)相关模型的协方差分析

方差分析中根据均方MS与期望均方EMS间的关系,可获得不同变异来源的方差分量估计值;在协方差分析中,根据均积MP与期望均积EMP间的关系,可获得不同变异来源的协方差分量估计值。

这种协方差分析称为相关模型的协方差分析。

协方差

求助编辑百科名片

协方差分析是建立在方差分析和回归分析基础之上的一种统计分析方法。 方差分析是从质量因子的角度探讨因素不同水平对实验指标影响的差异。一般说来,质量因子是可以人为控制的。 回归分析是从数量因子的角度出发,通过建立回归方程来研究实验指标与一个(或几个)因子之间的数量关系。但大多数情况下,数量因子是不可以人为加以控制的。

目录

协方差定义 协方差属性 协方差矩阵 在农业上应用

编辑本段协方差定义

在概率论和统计学中,协方差用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。

期望值分别为E(X) = μ 与 E(Y) = ν 的两个实数随机变量X与Y之间的协方差定义为:

COV(X,Y)=E[(X-E(X))(Y-E(Y))]

其中,E是期望值。它也可以表示为:

直观上来看,协方差表示的是两个变量总体误差的方差,这与只表示一个变量误差的方差不同。

如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。

如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。

如果X与Y是统计独立的,那么二者之间的协方差就是0。这是因为

协方差 公式

[1]

但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。

协方差cov(X,Y)的度量单位是X的协方差乘以Y的协方差。而取决于协方差的相关性,是一个衡量线性独立的无量纲的数。

协方差为0的两个随机变量称为是不相关的。

编辑本段协方差属性

两个不同参数之间的方差就是协方差 若两个随机变量X和Y相互独立,则E[(X-E(X))(Y-E(Y))]=0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。

定义

E[(X-E(X))(Y-E(Y))]称为随机变量X和Y的协方差,记作COV(X,Y),即COV(X,Y)=E[(X-E(X))(Y-E(Y))]。

协方差与方差之间有如下关系:

D(X+Y)=D(X)+D(Y)+2COV(X,Y)

D(X-Y)=D(X)+D(Y)-2COV(X,Y)

因此,COV(X,Y)=E(XY)-E(X)E(Y)。

协方差的性质:

(1)COV(X,Y)=COV(Y,X);

(2)COV(aX,bY)=abCOV(X,Y),(a,b是常数);

(3)COV(X1+X2,Y)=COV(X1,Y)+COV(X2,Y)。

由协方差定义,可以看出COV(X,X)=D(X),COV(Y,Y)=D(Y)。

协方差作为描述X和Y相关程度的量,在同一物理量纲之下有一定的作用,但同样的两个量采用不同的量纲使它们的协方差在数值上表现出很大的差异。为此引入如下概念:

定义

ρXY=COV(X,Y)/√D(X)√D(Y),称为随机变量X和Y的相关系数。

定义

若ρXY=0,则称X与Y不相关。

即ρXY=0的充分必要条件是COV(X,Y)=0,亦即不相关和协方差为零是等价的。

定理

设ρXY是随机变量X和Y的相关系数,则有

(1)∣ρXY∣≤1;

(2)∣ρXY∣=1充分必要条件为P{Y=aX+b}=1,(a,b为常数,a≠0)

定义

设X和Y是随机变量,若E(X^k),k=1,2,...存在,则称它为X的k阶原点矩,简称k阶矩。

若E{[X-E(X)]^k},k=1,2,...存在,则称它为X的k阶中心矩。

若E(X^kY^l),k、l=1,2,...存在,则称它为X和Y的k+l阶混合原点矩。

若E{[X-E(X)]^k[Y-E(Y)]^l},k、l=1,2,...存在,则称它为X和Y的k+l阶混合中心矩。

显然,X的数学期望E(X)是X的一阶原点矩,方差D(X)是X的二阶中心矩,协方差COV(X,Y)是X和Y的二阶混合中心矩。

编辑本段协方差矩阵

分别为m与n个标量元素的列向量随机变量X与Y,二者对应的期望值分别为μ与ν,这两个变量之间的协方差定义为m×n矩阵。

两个向量变量的协方差cov(X,Y)与cov(Y,X)互为转置矩阵。

协方差有时也称为是两个随机变量之间“线性独立性”的度量,但是这个含义与线性代数中严格的线性独立性线性独立不同。

编辑本段在农业上应用

协方差在农业上的应用

农业科学实验中,经常会出现可以控制的质量因子和不可以控制的数量因子同时影响实验结果的情况,这时就需要采用协方差分析的统计处理方法,将质量因子与数量因子(也称协变量)综合起来加以考虑。

比如,要研究3种肥料对苹果产量的实际效应,而各棵苹果树头年的“基础产量”不一致,但对试验结果又有一定的影响。要消除这一因素带来的影响,就需将各棵苹果树第1年年产量这一因素作为协变量进行协方差分析,才能得到正确的实验结果。

当两个变量相关时,用于评估它们因相关而产生的对应变量的影响。

当多个变量独立时,用方差来评估这种影响的差异

当多个变量相关时,用协方差来评估这种影响的差异

  

爱华网本文地址 » http://www.aihuau.com/a/25101011/72868.html

更多阅读

标准差与标准偏差 标准偏差与均方差

首先,标准差与标准偏差是一个概念,标准差也被称为标准偏差,或者实验标准差。简单来说,标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大;一个较小的标准差,代表这些数值

为什么我和父母的关系这么差? 我和父母一起学安全

我和父母的关系一直很差,当然是我的眼里,在他们眼里我不知道是什么,可能是我比较任性,或者只是脾气不好吧。我很多时间恨我的父母,讨厌他们,我理解所以80后的孩子们“父母是祸害”的言论,我也是个不折不扣的80后。有的时候我努力的说服自

回族与伊斯兰教、穆斯林的关系转贴 回族和穆斯林的关系

转载自回族在线长期以来,在文化上一直处于劣势的回族大众几乎没有解本民族的知识的途径,因此无论一些舆论对我们民族做出怎样的诠释和宣传(如把回族等同与穆斯林),民间很少又人去真正的思考和质疑。零散分布在各地的回族大众,多数为了生

转载 张爱萍与赵紫阳的恩怨 张爱萍和江的关系

原文地址:张爱萍与赵紫阳的恩怨作者:野草张爱萍之子张胜:父亲与赵紫阳、杨成武等人的分歧与冲突张爱萍将军中国青年出版社2008年1月出版的《从战争中走来——两代军人的对话,张爱萍人生记录》,其腰封标出:“毛泽东说他:‘好犯上!’,叶剑英

土耳其关闭与叙利亚边境 土耳其和叙利亚的关系

叙利亚人民涌入土耳其逃脱伊希斯武装分子已达到130000,与恐怖分子攻击那些逃离重型武器包括火箭发射器,据目击者说。大多数库尔德妇女、儿童和老人,和他们的到来,因为星期四靠近土耳其边境的冲突,一个穿越关闭以防止库尔德武装分子

声明:《标准差与协方差 方差和均值的关系》为网友傲世哥分享!如侵犯到您的合法权益请联系我们删除