傅里叶变换在不同信号形式下有不同的变换方法,前一篇我讲了几种信号形式的傅里叶变换和它们之间的关系.反正我不太关心前三种形式的傅里叶变换.数字信号处理其实主要就是处理最后一种形式,即在时域和频域上都是离散的周期信号的傅里叶变换,通讯中用于运算也是通过这种形式的傅里叶变换进行的.让我们在复习一下:
前面的一个公式是把时域信号转换为频域上的信号,就是我们常说的离散信号的傅里叶变换,即DFT,后面的一个公式就是把频域信号转换为时域上的信号,就是我们常说的离散信号的反傅里叶变换,即IDFT.
在通讯过程中,我们的很多实际信号大多是模拟信号,例如音乐,歌声.模拟信号要在计算机中进行处理就必须先转换为计算机可以使用的数字信号.拿声音来说吧,声音的频率从几十HZ到20KHZ,我们要把模拟信号变成数字信号就要先对模拟信号进行采样.根据采样定理,要想在采样后能够复原以前的模拟信号,采样率必须大于信号最高频率的2倍.现在的声卡一般采用44KHZ的采样率,44KHZ>20KHZ*2,其实就是这个意思.
模拟信号经过采样之后形成了一串数,在计算机中就使用数组来存储,也就是上面公式中的x(n),n就是n个采样点.那么经过转换后,X(k)则是用来存储不同频率点上的幅值.k相当于频域上的采样次数.
我们拿DFT公式来说明一下,X(k)用来存储变换后的不同频率上的幅值.频率点k可以从0开始一直取下去,但每个频率点的间隔即频率的分辨率Ferr则是由采样率SRate和时域上所取的采样点数N来决定的,即有下列的关系:
Ferr=SRate/N
举例来讲,如果采样率是44KHZ,即1秒钟采样了44K个采样点,在实际应用中,假如我们只取了其中的连续的22K个采样点进行分析,那么这时N==22000,那么X(k)存储的分别是的频率为0HZ,2HZ,4HZ,8HZ.....点上的幅值,也就是说,这是X(k)的频率的分辨率为44KHZ/22K=2HZ.
累了,下次再继续讲,有不对的地方,大家多包涵哈.