循环往复:德罗斯特效应与拓扑-麦比乌斯圈-克莱因瓶

拓扑学

拓扑学

拓扑学,是近代发展起来的一个研究连续性现象的数学分支。中文名称起源于希腊语Τοπολογ的音译。Topology原意为地貌,于19世纪中期由科学家引入,当时主要研究的是出于数学分析的需要而产生的一些几何问题。发展至今,拓扑学主要研究拓扑空间在拓扑变换下的不变性质和不变量。拓扑学是数学中一个重要的、基础的分支。起初它是几何学的一支,研究几何图形在连续变形下保持不变的性质(所谓连续变形,形象地说就是允许伸缩和扭曲等变形,但不许割断和粘合);现在已发展成为研究连续性现象的数学分支。

麦比乌斯圈

麦比乌斯圈(Möbius strip, Möbius band)是一种单侧、不可定向的曲面。因A.F.麦比乌斯(AugustFerdinand Möbius,1790-1868)发现而得名。将一个长方形纸条ABCD的一端AB固定,另一端DC扭转半周,把AB和CD粘合在一起,得到的曲面就是麦比乌斯圈,也称麦比乌斯带。想象一下一长条卫生纸,把它首尾相连,不要粘起来,就会发现原来的一面与其反面相连。对于中小学生来说,多制作几次麦比乌斯圈有助于理解。

从麦比乌斯环的三个奇妙之处和麦比乌斯环、环0以及生成的所有的环的六个特征,我们得到奇妙的启示:

  一、无论将麦比乌斯环放在宇宙时空的任何地方,我们同样也会发现麦比乌斯环之外的空间也只能是存在一个面,因此,宇宙时空的任何空间之处也只存在一个面。如果宇宙时空的任何空间之处只存在一个面,那么我们就可以认为宇宙时空中的任何一点与其它的点都是相通的,即整个宇宙时空是相通的,任何一点都是宇宙的中心,也是宇宙的边缘,宇宙时空中的任何物质也都是一样,也都处于宇宙的中心,也都处于宇宙的边缘。

  二:宇宙时空中的任何一个点都可以通过“裂变”的方式无中生有地生成一个对立的阴阳两性。无论生成的这一个对立的阴阳两性是否需要载体呈现出来,通过“裂变”的方式,无中生有地、生成的一个对立的阴阳两性,都需要一个比原来的空间大一倍的空间,来体现这生成的、一个对立的阴阳两性。

  三:只要存在“裂变”就会使原来的麦比乌斯环不再以“本来面目”存在,或者说,原来的麦比乌斯环已经不存在了。从无中生有的、生成的、具有一个对立的、阴阳两性的环0“复原”成原来的麦比乌斯环,则需要化解一个对立的阴阳两性的面。

  四、从麦比乌斯环生成为环0的过程,还使环0具有了因相互转换而最终呈现为同一个方向上的、性质不同的四个“拧劲”。我们得知,任何一个肯定应该是一个具有同一个方向上的、有缺口的或说成是非绝对的否定之否定之否定之否定的矢量(有一定方向的否定)过程。

  五、从环0生成环1和环2以及再“裂变”直至环n和环n+1后,所生成的所有的环n和环n+1都将套在一起,永远无法分开、永远也不可能与其它的环不发生联系而独立存在。这说明宇宙万物之间存在普遍联系的法则,而且任何一点或一个事物都与其他所有的宇宙万物相通相连,是不可分割的、不可遗漏的。

循环往复:德罗斯特效应与拓扑-麦比乌斯圈-克莱因瓶

  六、宇宙万物从最终起源上来讲是没有任何差异的,均起源于只有一个面的空间或者说没有任何面的状态。因此也可以说宇宙万物都是从无中生有中而来,只不过是在演变的过程中呈现出差异而已。

  七、在麦比乌斯环生成为环0的“裂变”过程中,无中生有的增加生成原有“拧劲”中的1倍的新的能量,也就是说在新产生的一对阴阳两性关系体的过程中的“裂变”不遵循“原则”;而之后的所有的宇宙万物的再“裂变”只能使宇宙的时空增大,不再生成新的能量,而且在“裂变”中必然遵循“能量守恒定律”。

  八、宇宙时空中的任何一个点都可以通过无中生有的方式第一次生成阴阳两性,然后再分别以刚生成的阴阳两性为基础生成第一次的阴阳两性的两个物质,第二次、第三次……直至永无穷尽。

麦比乌斯圈与克莱因瓶

如果我们把两条麦比乌斯带沿着它们唯一的边粘合起来,你就得到了一个克莱因瓶(当然不要忘了,我们必须在四维空间中才能真正有可能完成这个粘合,否则的话就不得不把纸撕破一点)。同样地,如果把一个克莱因瓶适当地剪开来,我们就能得到两条麦比乌斯带。除了我们上面看到的克莱因瓶的模样,还有一种不太为人所知的“8字形”克莱因瓶。它看起来和上面的曲面完全不同,但是在四维空间中它们其实就是同一个曲面——克莱因瓶。实际上,可以说克莱因瓶是一个三度的麦比乌斯带。我们知道,在平面上画一个圆,再在圆内放一样东西,假如在二度空间中将它拿出来,就不得不越过圆周。但在三度空间中,很容易不越过圆周就将其拿出来,放到圆外。将物体的轨迹连同原来的圆投影到二度空间中,就是一个“二维克莱因瓶”,即麦比乌斯带(这里的麦比乌斯带是指拓扑意义上的麦比乌斯带)。再设想一下,在我们的三度空间中,不可能在不打破蛋壳的前提下从鸡蛋中取出蛋黄,但在四度空间里却可以。将蛋黄的轨迹连同蛋壳投影在三度空间中,必然可以看到一个克莱因瓶。附:克莱因瓶在三维空间中是破裂的,最少要有一个裂缝,如果有两个裂缝的话,它必然是两条部分相和连的麦比乌斯带,同样n条麦比乌斯带也可以组合成一个有n个裂缝克莱因瓶。

克莱因瓶

三维空间中的克莱因瓶数学领域中,克莱因瓶(Kleinbottle)是指一种无定向性的平面,比如2维平面,就没有“内部”和“外部”之分。克莱因瓶最初的概念提出是由德国数学家菲利克斯·克莱因提出的。克莱因瓶和莫比乌斯带非常相像。克莱因瓶的结构非常简单,一个瓶子底部有一个洞,现在延长瓶子的颈部,并且扭曲地进入瓶子内部,然后和底部的洞相连接。和我们平时用来喝水的杯子不一样,这个物体没有“边”,它的表面不会终结。它也不类似于气球,一只苍蝇可以从瓶子的内部直接飞到外部而不用穿过表面(所以说它没有内外部之分)。

 我们可以说一个球有两个面——外面和内面,如果一只蚂蚁在一个球的外表面上爬行,那么如果它不在

克莱因

球面上咬一个洞,就

无法爬到内表面上去。轮胎面(环面)也是一样,有内外表面之分。但是克莱因瓶却不同,我们很容易想象,一只爬在“瓶外”的蚂蚁,可以轻松地通过瓶颈而爬到“瓶内”去——事实上克莱因瓶并无内外之分!在数学上,我们称克莱因瓶是一个不可定向的二维紧致流型,而球面或轮胎面是可定向的二维紧致流型。如果我们观察克莱因瓶的图片,有一点似乎令人困惑——克莱因瓶的瓶颈和瓶身是相交的,换句话说,瓶颈上的某些点和瓶壁上的某些点占据了三维空间中的同一个位置。但是事实却非如此。事实是:克莱因瓶是一个在四维空间中才可能真正表现出来的曲面,如果我们一定要把它表现在我们生活的三维空间中,我们只好将就点,只好把它表现得似乎是自己和自己相交一样。事实上,克莱因瓶的瓶颈是穿过了第四维空间再和瓶底圈连起来的,并不穿过瓶壁。这是怎么回事呢?我们用扭结来打比方。如果我们把它看作平面上的曲线的话,那么它似乎自身相交,再一看似乎又断成了三截。但其实很容易明白,这个图形其实是三维空间中的曲线,它并不和自己相交,而且是连续不断的一条曲线。在平面上一条曲线自然做不到这样,但是如果有第三维的话,它就可以穿过第三维来避开和自己相交。只是因为我们要把它画在二维平面上时,只好将就一点,把它画成相交或者断裂了的样子。克莱因瓶也一样,这是一个事实上处于四维空间中的曲面。在我们这个三维空间中,即使是最高明的能工巧匠,也不得不把它做成自身相交的模样;就好像最高明的画家,在纸上画扭结的时候也不得不把它们画成自身相交的模样。题图就是一个用玻璃吹制的克莱因瓶。好玩的是,如果把克莱因瓶沿着它的对称线切下去,竟会得到两个麦比乌斯圈!

剪开的克莱因瓶

在二维看似穿过自身的绳子

  

克莱因瓶与太极图

  克莱因瓶从上往下的投影即为太极图。

莫比乌斯带和克莱因瓶只是作为拓扑几何的著名范例而被充分研究,作为几何图形的性质它们是清晰、简单、甚至是优美的,但人们对它的所表达的事物性质却迷惑不解,几乎所有的数学家,哲学家,爱好者都对它的性质着迷,但难于理解这种简单的几何图象所表达的神秘性质:两个面如何是一个面?一个面又如何是两个面?它们是从形式的流变中的揭示了几何学的哲学,用几何学的方法表现了最深刻的哲学原理,这种西方哲学和几何学所未充分了解的秘密却在古代思想家中得到了充分的领悟。如果我们把莫比乌斯带和克莱因瓶进一步进行抽象的综合,即去掉它们的空间性质,我们可以得到一个更加抽象的思想图式,它就是中国太极图(见附图) 。

德罗斯特效应

 德罗斯特效应(Drosteeffect)是递归的一种视觉形式,是指一张图片的某个部分与整张图片相同,如此产生无限循环。

德罗斯特效应就好像是说,你拿着一面镜子,然后再站在一面镜子前面,让两面镜子相对。你看到镜子里面的情景,是相同的,无限循环的。最经典的就是一个人拿着一个相框,相框里他拿着相框……基本就是“山上有座庙,庙里有个老和尚……”的故事。

  德罗斯特效应是一组非常有意思的照片,非常神奇,有的需要你花时间去辨别,如果你在这些图像上盯着太久,你可能会觉得自己越来越走到框架里面,甚至造成头晕、胸闷、脑子混乱…这种神奇的效果称为“德罗斯特效应”。如果你想自己真正的体验一次,那么,找两面大镜子,使其以“丨丨”的形式互相平行放置。在光线好的情况下,你站在两面镜子中间,就可以看到许多的“小空间”。

  

爱华网本文地址 » http://www.aihuau.com/a/25101012/123628.html

更多阅读

DNF绝望之塔96层索德罗斯怎么打 dnf绝望96层攻略

DNF绝望之塔96层索德罗斯怎么打——简介DNF绝望之塔96层索德罗斯怎么打?难倒了不少玩家,下面是小编搜集到的最新信息,下面我们一起来看详细的内容介绍。DNF绝望之塔96层索德罗斯怎么打——方法/步骤DNF绝望之塔96层索德罗斯怎么打 1、

PS制作画中画德罗斯特效应 德罗斯特效应

本文分享的PS制作画中画是采用了比较出名的德罗斯特效应制作的。所谓德罗斯特效应(Drosteeffect)是递归的一种视觉形式,是指一张图片的某个部分与整张图片相同,如此产生无限循环。  德罗斯特效应(droste效应)就好像是说,你拿着一面镜子

物理学上的奇迹:莫比乌斯环、克莱因瓶

从三维到二维: 莫比乌斯带解释:数学意义上的;零伟表示点,一维表示线。二维表示平面,三维表示立体。莫比乌斯圈是指一种单侧,没有定向的曲面。所谓单侧,也就是指仅有一个面。 可以动手做一下,将长方形纸条ABCD的其中一边AB固定,将CD扭转18

第20节:索罗斯带你走出金融危机(20)

系列专题:《反身性理论:索罗斯带你走出金融危机》  这次领悟促使我重新思考什么是开放社会,而此前我几乎是不加批判地就接受了卡尔?波普的这一概念。这次领悟也有些其他好处,它让我坚信我的概念框架具有客观价值,远超出我个人的喜好范

声明:《循环往复:德罗斯特效应与拓扑-麦比乌斯圈-克莱因瓶》为网友死亡才是证明分享!如侵犯到您的合法权益请联系我们删除