转载 拒绝专业术语!详解汽车差速器构造原理 眼睛构造详解

原文地址:拒绝专业术语!详解汽车差速器构造原理作者:德国马哈汽车检测

来源:汽车之家

汽车是我们在日常生活中经常会用到的交通工具,然而一辆车要开动起来其实并不简单,其中凝聚着人类上百年的科技结晶。今天为大家讲解车内一个很不起眼但很关键的设备——差速器。车的动力来自哪里?傻子都知道是发动机!但各位有没有想过(我相信都想过),在普通两驱车上,动力是如何从发动机传递到两个轮胎上去的?因为发动机输出的动力经过变速箱再出来只是一根传动轴,而驱动轮是两个,这就需要一个把传动轴的动力分成两部分传到车轮上的装置,这个装置就是差速器!

要解释差速器原理,我们首先引用百度百科中的解释:


“……汽车在拐弯时车轮的轨线是圆弧,如果汽车向左转弯,圆弧的中心点在左侧,在相同的时间里,右侧轮子走的弧线比左侧轮子长,为了平衡这个差异,就要左边轮子慢一点,右边轮子快一点,用不同的转速来弥补距离的差异。”

“……普通差速器由行星齿轮、行星轮架(差速器壳)、半轴齿轮等零件组成。发动机的动力经传动轴进入差速器,直接驱动行星轮架,再由行星轮带动左、右两条半轴,分别驱动左、右车轮。差速器的设计要求满足:(左半轴转速)+(右半轴转速)=2(行星轮架转速)。当汽车直行时,左、右车轮与行星轮架三者的转速相等处于平衡状态,而在汽车转弯时三者平衡状态被破坏,导致内侧轮转速减小,外侧轮转速增加。……”

“这种调整是自动的,这里涉及到‘最小能耗原理’,也就是地球上所有物体都倾向于耗能最小的状态。例如把一粒豆子放进一个碗内,豆子会自动停留在碗底而绝不会停留在碗壁,因为碗底是能量最低的位置(位能),它自动选择静止(动能最小)而不会不断运动。同样的道理,车轮在转弯时也会自动趋向能耗最低的状态,自动地按照转弯半径调整左右轮的转速。当转弯时,由于外侧轮有滑拖的现象,内侧轮有滑转的现象,两个驱动轮此时就会产生两个方向相反的附加力,由于‘最小能耗原理’,必然导致两边车轮的转速不同,从而破坏了三者的平衡关系,并通过半轴反映到半轴齿轮上,迫使行星齿轮产生自转,使外侧半轴转速加快,内侧半轴转速减慢,从而实现两边车轮转速的差异。”


如果对于专业人事来说,这篇文章到此可以结束了,但是作为普通汽车爱好者,我们需要的不是死板的书本知识,因此这里有必要用通俗易懂的语言把差速器是怎样工作的这一问题解释清楚。

为什么要装差速器?

首先要说的是差速器这个装置装在哪里,它的位置应该处于传动轴与左右半轴的交汇点,从变速箱输出的动力在这里被分配到左右两个半轴。至于为什么要装差速器这个问题就不需多做解释了,百度百科里写得非常清楚。我们都知道汽车在直线行驶时左右两个驱动轮的转速是相同的,但在转弯过时两边车轮行驶的距离不是等长的,因此车轮的转速肯定也会不同。差速器的作用就在于允许左右两边的驱动轮以不同的转速运行。

差速器的构造:

其实说白了,整个差速器系统的核心是四个齿轮:两个行星齿轮和两个与传动轴相连的半轴齿轮。这四个齿轮都在差速器壳内,这个壳体连接着传动轴(图中①),本身也要转动,在行驶时它的转动方向与车轮转动方向相同。

我们可以用一个球体来解释差速器问题!我们假设这个球体和地球一样有两个极点,并且以两极的连线为轴进行自传,这个球体可以理解为差速器壳体,这个壳体的两极连接的就是汽车的左右半轴。这里安装着两个半轴齿轮,两齿轮中心的连线就是差速器壳体转动的轴线(图中②、④)。

除了两个半轴齿轮外还有两个行星齿轮(图中③)。理解两个行星齿轮的状态是理解差速原理的关键。还拿刚才所说的球体来举例,两个齿轮是对向安装并且与半轴齿轮垂直,相当于6点钟和12点钟位置。这两个齿轮经常要朝相反方向转动,从而实现差速作用。壳体在自传过程中会带着两个齿轮做公转。

这四个齿轮虽然安装在壳体内部但都是可以独立于差速器壳体转动的,只不过它们相互咬合在一起,每个齿轮的两边都咬合着另外两个齿轮(每个半轴齿轮都咬合着两个行星齿轮,每个行星齿轮都咬合着两个半轴齿轮),只要其中一个齿轮转动都会牵扯到其他三个齿轮一起转动,而且其中一个齿轮朝某个方向转动,与它相对的另一边齿轮必定朝反方向转动!这个现象可以通过实验来证实:如果把一辆车的两个驱动轮都悬空,转动一边的车轮,另一侧车轮会朝相反方向转动。

差速器的运作原理:

『车辆直行时差速器状态』

直线行驶时的特点是左右两边驱动轮的阻力大致相同。从发动机输出的动力首先传递到差速器壳体上使差速器壳体开始转动。接下来要把动力从壳体传递到左右半轴上,我们可以理解为两边的半轴齿轮互相在“较劲”,由于两边车轮阻力相同,因此二者谁也掰不过对方,因此差速器壳体内的行星齿轮跟着壳体公转同时不会产生自转,两个行星齿轮咬合着两个半轴齿轮以相同的速度转动,这样汽车就可以直线行驶了!

『一侧车轮遇到阻力』

假设车辆现在向左转,左侧驱动轮行驶的距离短,相对来说会产生更大的阻力。差速器壳体通过齿轮和输出轴相连,在传动轴转速不变情况下差速器壳体的转速也不变,因此左侧半轴齿轮会比差速器壳体转得慢,这就相当于行星齿轮带动左侧半轴会更费力,这时行星齿轮就会产生自传,把更多的扭矩传递到右侧半轴齿轮上,由于行星齿轮的公转外加自身的自传,导致右侧半轴齿轮会在差速器壳体转速的基础上增速,这样以来右车轮就比左车轮转得快,从而使车辆实现顺滑的转弯。

为了更方便大家理解差速器的原理,我将结合上面这个视频为大家讲解。首先要说明的是视频里这个差速器和之前我们说的差速器有一点儿不同。视频里的差速器有四个行星齿轮,而我们所讲的差速器有两个行星齿轮,其实各位不用在意行星齿轮的多少,实质的原理都是一样的。

在这段视频里,从屏幕最左边伸过来的这根轴是传动轴,发动机输出的动力经过传动轴传递到差速器壳体上,视频里那个最大的齿轮就固定在差速器壳体上,这个大齿轮旋转就相当于差速器壳体的旋转。

在视频的前7秒钟演示的是车辆转弯时的状态,我们可以明显看出靠下的这一侧半轴转速要比另一侧半轴和差速器壳体都慢,这时差速器壳体内的行星齿轮就会旋转,把扭矩传到另一侧半轴上。第7秒之后到第14秒演示的是直线行驶状态,两侧阻力相同,因此壳体内的行星齿轮不会转动,两侧半轴转速相同。第14秒之后演示的是上面那一侧半轴遇到阻力的情况。

普通差速器的弊端:

现在有一个问题:如果一侧驱动轮失去抓地力为什么车辆就无法前行?那是因为当一侧车轮失去抓地之后,相当于这一侧车轮的阻力为0,而另一侧车轮的阻力相对于失去抓地的这一侧来说太大了,在跟着壳体做公转的同时,差速器内的行星齿轮自身还会疯狂的自转,把动力源源不断的传递到失去抓地的那一侧车轮,因此车子只会呆在原地不动。

因此可以这样说,我们日常生活中接触的两轮驱动家用车其实是很“脆弱”的,只要路面铺装得不好或者带点泥泞的话就很有可能抛锚!这和车子的马力大小是没有关系的。这也是为什么很多高性能车和越野车要装备限滑差速器。

限滑差速器的作用是若左右半轴的转速差过大,限滑差速器会锁止普通差速器,让动力能够在左右两侧半轴合理分配。而一些专业的越野车装备四驱装置和差速锁,在抓地力不足的情况下通过手动控制或者电子设备把差速器锁止,此时差速器就不起作用了,动力被平均分配到四个车轮上帮助车辆摆脱困境,关于四驱装置的原理会在之后的文章中做具体讲解。

“电子差速锁”“电子限滑差速器”这是同样的东西吗?竟然连身为汽车编辑的人自己都还没搞明白,而某品牌4S店里的销售大哥/大嫂也会向你描述一下他们某款前驱轿车装备了“电子差速锁”什么的,那功能更是被吹得天花乱坠,你身边也会有一些很懂车的兄弟跟你说限滑差速器或差速锁是个何等神奇的玩意儿,但是,你确定你听懂了吗?

我们首先要了解一点,那就是嘴上挂着这些词儿的人,其实十个有八个压根儿没明白是怎么回事儿。而他们的错误认知,很大程度上来源于那些自己也没明白差速器是怎么回事儿的汽车编辑。各位,今儿,咱就再认真的琢磨一遍差速器的这些事儿,做个明白人,权当是让自己对汽车有个更清晰的认知,毕竟,信自己比信什么都强(别提“信春哥”,春哥不懂车…)。

●什么是差速器?

在描述“差速锁”或是“限滑差速器”之类的概念之前,我们先要了解什么是差速器,以及它有什么样的作用。

『普通差速器示意图』

如果直白的说,差速器的存在就是为了补偿左右驱动轮间(轮间差速器)或各个驱动桥间(轴间差速器)的转速差异,使车辆顺利转弯,并且能消除因为车轮滚动半径不同或路面不同起伏等因素可能造成的车轮滑动。目前轮间差速器中使用最广泛的,就是文章中图示的对称式锥齿轮差速器。

没有差速器会怎么样?转弯,内侧车轮滑拖,外侧车轮滑动,轮胎还有传动机构直接承受这种应力,要么轮胎磨损,要么传动轴和齿轮给你闹出个三长两短,要么失控要么翻车…如果你还是想不出来没有差速器是个什么状态,可以看看下面这个视频。

>>为了节省您的时间,视频请从2分54秒开始观看<<


更多精彩视频,尽在汽车之家视频频道

关于差速器大致的结构和描述如果感兴趣,可以参考下面这篇文章。


差速器的运动特性、转矩分配特性和锁紧系数的概念

对于对称锥齿轮差速器而言,在左右半轴相同转速的情况下,行星齿轮仅公转不自转,左右半轴得到的转矩是平均分配的。

而当左右半轴有一侧转速较慢时,行星齿轮在公转的同时开始沿着转速慢的一侧半轴齿轮滚动,绕行星齿轮轴开始自转,另一侧半轴则加速旋转(两半轴转速之和恒定等于两倍差速器壳体转速),由于行星齿轮的自转,其受到一个反向的摩擦力矩MT,这个摩擦力矩使行星齿轮分别对左右半轴附加作用了大小相等方向相反的两个圆周力F1和F2,在左右半轴齿轮上产生的圆周力使得左右半轴转矩分配发生变化,转动慢的一侧转矩增加。


到这里,我们应该明白一件事,“差速器会将动力向转速快的那一侧传递”的说法是不对的,实际上转速慢的一侧转矩反而较大。而对于“锁紧系数”这个概念,大家只要记住一点,锁紧系数越高的差速器,在两侧半轴出现转速差时,就会越多的照顾到转动较慢的半轴,让慢半拍的半轴得到越多的转矩分配。

●差速锁、防(限)滑差速器...“电子差速锁”是真的“锁”吗?

但是,比较了解车的网友可能要问了,转矩是转速慢的一侧大,那为什么一侧车轮打滑的时候另一侧车轮会没有动力不能脱困?这个问题提得非常好!我们接下来就讨论这个话题。

关键点在于上一页式子里的MT,对称锥齿轮差速器的内摩擦力矩MT通常很小,因此左右半轴转速不同时,转矩分配的程度有限,锁紧系数K值通常在0.05~0.15之间,左右半轴转矩比(M2/M1)通常在1.1~1.4之间,所以这种差速器基本上可以认为转矩在任何情况下都是平均分配的。而这种转矩平均分配的特点,决定了这类差速器在左右车轮附着系数有明显差别时的情况。

『正是因为对称式锥齿轮差速器平均分配的特性,所以会出现一侧车轮空转
[转载]拒绝专业术语!详解汽车差速器构造原理 眼睛构造详解
而另一侧附着力良好车轮却无法前进的情况』

因为平均分配的特性,当左右车轮处在不同附着系数的路面上时(如一侧冰雪、一侧铺装路面),低附着力路面上的车轮能够产生的驱动力矩非常小(轮端摩擦力过小,所以没有办法获得需要的反作用力),而此时对侧附着力良好的车轮也只能得到几乎同样的驱动力矩,而这样的驱动力矩没有办法使良好附着力路面上的车轮滚动前进(这和发动机动力无关,只和此时两侧车轮附着系数的落差有关),因此,即便你猛踩油门,也只能使低附着力的一侧车轮失去附着力空转,而对侧的车轮则因为驱动力矩不足而无法前进。在这样的时候,你一定会说,要是没有差速器就好了!

这个主意非常好!基于差速器这样的特性,我们便有了“差速锁”,差速锁顾名思义,是差速器的锁止机构,用来锁止轮间差速器(左右半轴间)或者轴间差速器(前后驱动桥间),来应对单个或多个车轮失去附着力无法脱困的情况。有了差速锁,我们就能在任何一个你冒出“要是没有差速器就好了”的时刻果断的将差速器锁止,“关闭”它的差动功能。随着技术的发展,从机械控制到现在的电控差速锁(例如气动、电磁等控制方式),使用越来越便利。这类带有锁止机构的差速器被称之为“强制锁止差速器”。

但是强制锁止差速器只是“防滑差速器”家族当中的一个门派,它并不完美,因为不论它的控制机构怎么进化,终归还是需要人为的锁止和打开。相比较而言,隶属于“自锁式”差速器阵营中的各类机械和电子式的限(防)滑差速器在灵活性上较“差速锁”更加优异,它们依靠摩擦片结构、凸轮滑块结构或蜗轮蜗杆结构来达到较高的锁紧系数,甚至还有自锁的功能,可以不需要人为控制,利用自身结构合理分配转矩。

这类差速器通常拥有超过0.5的锁紧系数,一方面能够在正常行驶和转向时起到差速作用,另一方面高锁紧系数意味着,当转向、一侧车轮打滑、或者四驱车上一边驱动桥打滑时,较高的锁紧系数会使得转速低的一侧驱动转矩增大。比如在全时四驱车上,装备自锁式中央差速器的车型,在转向时后驱动桥就能够得到更多的转矩(因为后桥转向半径小于前桥),呈现倾向于后驱车的驾驶特性。

而我们常常说到的托森差速器(商标权属于日本JTEKT--丰田旗下企业,目前奥迪、丰田等品牌都在使用托森差速器,同时托森不仅作为中央差速器,也有用来做轮间差速器的),依靠蜗轮蜗杆传动的不可逆原理,能够在内部差动转矩较小时起差速作用,而在内部差动转矩较大时,实现自锁,使动力直接传递,不再起差速作用,更好的提升通过性,这正是所谓的“扭力感应式限滑差速器”叫法的由来。

另外,现在越来越主流的电控多片离合器结构的中央差速器通过电-液或电磁控制摩擦片的接合程度,配合传感器判断车辆行驶状态,能够实现主动分配转矩,提升可控性和通过性能,较传统的摩擦片式自锁差速器或粘性耦合器结构更加先进,市面上大多数前横置发动机布局的SUV使用的都是这类四驱系统(供应商主要有GKN、博格华纳、瀚德等)。

>>想了解更多四驱知识?来看看我们的“玩转四驱”<<

好了,说完了差速器,差速锁,限滑差速器,再来说说所谓的“电子差速锁”,它的中文名称看起来只和“电控差速锁”相差一字,但二者概念却有天壤之别。

电控差速锁前面已经讲过,通常只出现在全时四驱车(用来锁止中央差速器或驱动桥轮间差速器)或者分时四驱车上(用来锁止轮间差速器),而毫无理由出现在一辆前横置发动机的前驱轿车或前驱城市SUV上,如果有人指着这样的汽车,跟你开始说“这车装备了可以锁止差速器的电控差速锁”之类的话时,你可以99.98%的不相信,然后抱着那0.02%的疑问向他咨询一下:“您这车,火星来的?”

而那些把“电子差速锁”和“电子限滑差速器”混为一谈的人,就更加值得我们钦佩了。因为所谓的“电子差速锁”,不论它有多少种英文缩写(EDL、EDS、XDS等等),它的实质都不会变,它和之前我们提到的各种差速器、差速锁最大的差别就是,“电子差速锁”并没有一个客观存在的实体,用通俗的话说,“电子差速锁真不是东西!”它只是一项ABS/ESP系统的扩展功能而已。

换言之,即使你把汽车完全拆散,也绝对找不到一套叫做“电子差速锁(EDL、EDS或XDS)”的装置。那么,这个东西到底有什么用呢?

我们以前驱车转弯时的情况为例:在转弯时,由于惯性作用,车辆重心外移,地面与内侧前轮的摩擦力小于外侧,所以内侧车轮更容易打滑,一旦车轮发生打滑,此时由于差速器的平均分配转矩特性,能够施加的有效转矩便只能达到打滑车轮滑动摩擦力的力矩水平,因此有附着力的外前轮得不到足够的驱动力矩,所以车辆将会出现严重的转向不足(俗称推头),车头外甩无法转向,失去方向控制。

而电子差速锁,会利用轮速传感器的信息及车辆其他传感器信息对车轮的工作状态和车辆行驶状态作出判断,当监测到内侧车轮将发生打滑或已经打滑时,制动系统能够对内侧前轮的车轮实施制动,这相当于提高了打滑车轮这一侧的附着系数,使传递到轮端的有效扭矩提升,只要这个通过制动带来的“附着系数”比外侧有附着力车轮的附着系数高,差速器就能够传递足够的驱动转矩驱动外侧车轮转动,使车辆保持方向的可控性。好了,这就是“电子差速锁”,和前面我们提到的各种“锁”以及“限滑”差速器都没有任何关系。

『同样的原理被很多城市SUV用来控制轮间的扭矩分配』

虽然相比真正的限滑差速器和差速锁在性能上仍有差距,但是这仅属于ESP的附加功能,无论在成本上还是结构上都更加简单(完全没有结构嘛...),因此,“电子差速锁”的原理得到了更加广泛的应用----很多城市SUV开始利用“制动”来进行轮间的扭矩分配,帮助车辆提高公路行驶性能和通过能力。

小结:

希望通过这篇文章,广大车友能够对“差速器”有一个更加直接和深入的了解,再面对号称自己有限滑差速器或者什么能锁止的“差速锁”之类的销售者或者自以为非常懂的伪专家时,您能把那一堆废话和假话听得更加真切。而对于执着于改装和驾驶的狂热爱好者而言,了解各类差速器的性能,对于改装和驾驭车辆都是不可或缺的一环。(文/图汽车之家范鑫)

  

爱华网本文地址 » http://www.aihuau.com/a/25101012/129569.html

更多阅读

转载 《戏说乾隆》全解 戏说乾隆 电视剧

原文地址:《戏说乾隆》全解作者:轻舞飞扬人物篇乾隆(四爷)太和殿上,他是高高在上的皇帝,通古博今,不苟言笑;江南、热河、云南,他是行走江湖的四爷,插科打诨,笑对人生。郑少秋谈到乾隆皇帝这个角色的时候,他说,戏说乾隆里描写的乾隆和他以前扮演过

经济学专业术语 国际贸易专业术语

经济学专业术语 《经济学》(第19版),(美)保罗&#8226;萨缪尔森、威廉&#8226;诺德豪斯著,萧琛主译,商务印书馆2013年第1版第593—620页。(税收的)支付能力原则:按照纳税人支付能力确定纳税负担的原则。纳税人支付能力依据其收入或财富来衡量。

声明:《转载 拒绝专业术语!详解汽车差速器构造原理 眼睛构造详解》为网友领先后分享!如侵犯到您的合法权益请联系我们删除