外国数学史 数学史

http://pub.tt-xx.com/Articles/shuxue/gesx/C9A45B6A-E20B-4DE3-A144-26B844F42416.shtml

发布日期:2009-03-27

古代埃及数学 (Ancient Egyptian Mathematics)

非洲东北部的尼罗河流域,孕育了埃及的文化。在公元前3500-3000年间,这里曾建立了一个统一的帝国。
目前我们对古埃及数学的认识,主要源于两份用僧侣文写成的纸草书,其一是成书于公元前1850年左右的莫斯科纸草书,另一份是约成书于公元前1650年的兰德(Rhind)纸草书,又称阿梅斯(Ahmes)纸草书。阿梅斯纸草书的内容相当丰富,讲述了埃及的乘法和除法、单位分数的用法、试位法、求圆面积问题的解和数学在许多实际问题中的应用。
古埃及人使用象形文字其数字以十进制表示,但并非位值制,而分数还有一套专门的记法。由埃及数系建立起来的算术具有加法特征,其乘、除法的计算也只是利用连续加倍的方法来完成。古埃及人将所有的分数都化成单位分数(分子为1的分数之和),在阿梅斯纸草书中,有很大一张分数表,把状分数表示成单位分数之和。
古埃及人已经能解决一些属于一次方程和最简单的二次方程的问题,还有一些关于等差数列、等比数列的初步知识。
如果说巴比伦人发展了卓越的算术和代数学,那么在另一方面,人们一般认为埃及人在几何学方面要胜过巴比伦人。一种观点认为,尼罗河水每年一次的定期泛滥,淹没河流两岸的谷地。大水过后,法老要重新分配土地,长期积累起来的土地测量知识逐渐发展为几何学。
埃及人能够计算简单平面图形的面积,计算出的圆周率为3.16049;他们还知道如何计算棱椎、圆椎、圆柱体及半球的体积。其中最惊人的成就在于方棱椎平头截体体积的计算,他们给出的计算过程与现代的公式相符。
至于在建造金字塔和神殿过程中,大量运用数学知识的事实表明,埃及人已积累了许多实用知识,而有待于上升为系统的理论

印度数学 (Hindu Mathematics)

印度是世界上文化发达最早的地区之一,印度数学的起源和其它古老民族的数学起源一样,是在生产实际需要的基础上产生的。但是,印度数学的发展也有一个特殊的因素,便是它的数学和历法一样,是在婆罗门祭礼的影响下得以充分发展的。再加上佛教的交流和贸易的往来,印度数学和近东,特别是中国的数学便在互相融合,互相促进中前进。另外,印度数学的发展始终与天文学有密切的关系,数学作品大多刊载于天文学著作中的某些篇章。
绳法经》属于古代婆罗门教的经典,可能成书于公元前6世纪,是在数学史上有意义的宗教作品,其中讲到拉绳设计祭坛时所体现到的几何法则,并广泛地应用了勾股定理。
此后约1000年之中,由于缺少可靠的史料,数学的发展所知甚少。
公元5-12世纪是印度数学的迅速发展时期,其成就在世界数学史上占有重要地位。在这个时期出现了一些著名的学者,如6世纪的阿利耶波多(第一)(ryabhata),著有《阿利耶波多历数书》;7世纪的婆罗摩笈多(Brahmagupta),著有《婆罗摩笈多修订体系》(Brahma-sphuta-sidd"hnta),在这本天文学著作中,包括「算术讲义」和「不定方程讲义」等数学章节;9世纪摩诃毗罗(Mahvira);12世纪的婆什迦罗(第二)(Bh skara),著有《天文系统极致》(Siddh ntairomani),有关数学的重要部份为《丽罗娃提》(Lil vati)和《算法本源》(V jaganita)等等。
在印度,整数的十进制值制记数法产生于6世纪以前,用9个数字和表示零的小圆圈,再借助于位值制便可写出任何数字。他们由此建立了算术运算,包括整数和分数的四则运算法则;开平方和开立方的法则等。对于「零」,他们不单是把它看成「一无所有」或空位,还把它当作一个数来参加运算,这是印度算术的一大贡献。
印度人创造的这套数字和位值记数法在8世纪传入伊斯兰世界,被阿拉伯人采用并改进。13世纪初经斐波纳契的《算盘书》流传到欧洲,逐渐演变成今天广为利用的1,2,3,4,…等等,称为印度-阿拉伯数码。
印度对代数学做过重大的贡献。他们用符号进行代数运算,并用缩写文字表示未知数。他们承认负数和无理数,对负数的四则运算法则有具体的描述,并意识到具有实解的二次方程有两种形式的根。印度人在不定分析中显示出卓越的能力,他们不满足于对一个不定方程只求任何一个有理解,而致力于求所有可能的整数解。印度人还计算过算术级数和几何级数的和,解决过单利与复利、折扣以及合股之类的商业问题。
印度人的几何学是凭经验的,他们不追求逻辑上严谨的证明,只注重发展实用的方法,一般与测量相联系,侧重于面积、体积的计算。其贡献远远比不上他们在算术和代数方面的贡献大。在三角学方面,印度人用半弦(即正弦)代替了希腊人的全弦,制作正弦表,还证明了一些简单的三角恒等式等等。他们在三角学所做的研究是十分重要的。

阿拉伯数学 (ArabicMathematics)

从九世纪开始,数学发展的中心转向拉伯和中亚细亚
自从公元七世纪初伊斯兰教创立后,很快形成了强大的势力,迅速扩展到阿拉伯半岛以外的广大地区,跨越欧、亚、非三大洲。在这一广大地区内,阿拉伯文是通用的官方文字,这里所叙述的阿拉伯数学,就是指用阿拉伯语研究的数学。
从八世纪起,大约有一个到一个半世纪是阿拉伯数学的翻译时期,巴格达成为学术中心,建有科学宫、观象台、图书馆和一个学院。来自各地的学者把希腊、印度和波斯的古典著作大量地译为阿拉伯文。在翻译过程中,许多文献被重新校订、考证和增补,大量的古代数学遗产获得了新生。阿拉伯文明和文化在接受外来文化的基础上,迅速发展起来,直到15世纪还充满活力。
花拉子米(Al-khowarizmi)是阿拉伯初期最主要的数学家,他编写了第一本用阿拉伯语在伊斯兰世界介绍印度数字和记数法的著作。公元十二世纪后,印度数字、十进制值制记数法开始传入欧洲,又经过几百年的改革,这种数字成为我们今天使用的印度─阿拉伯数码。花拉子米的另一名著《ilmal-jabrwa"lmugabalah》(《代数学》)系统地讨论了一元二次方程的解法,该种方程的求根公式便是在此书中第一次出现。现代“algebra”(代数学)一词亦源于书名中出现的“aljabr”。
三角学在阿拉伯数学中占有重要地位,它的产生与发展和天文学有密切关系。阿拉伯人在印度人和希腊人工作的基础上发展了三角学。他们引进了几种新的三角量,揭示了它们的性质和关系,建立了一些重要的三角恒等式。给出了球面三角形和平面三角形的全部解法,制造了许多较精密的三角函数表。其中著名的数学家有:阿尔巴塔尼(Al-Battani)、阿卜尔维法(Abu"l-Wefa)、阿尔比鲁尼(Al-Beruni)等。系统而完整地论述三角学的著作是由十三世纪的学者纳西尔丁(Nasired-din)完成的,该著作使三角学脱离天文学而成为数学的独立分支,对三角学在欧洲的发展有很大的影响。
在近似计算方面,十五世纪的阿尔卡西(Al-kashi)在他的《圆周论》中,叙述了圆周率π的计算方法,并得到精确到小数点后16位的圆周率,从而打破祖冲之保持了一千年的记录。此外,阿尔卡西在小数方面做过重要工作,亦是我们所知道的以「帕斯卡三角形」形式处理二项式定理的第一位阿拉伯学者。
阿拉伯几何学的成就低于代数和三角。希腊几何学严密的逻辑论证没有被阿拉伯人接受。
总的来看,阿拉伯数学较缺少创造性,但当时世界上大多数地方正处于科学上的贫瘠时期,其成绩相对显得较大,值得赞美的是他们充当了世界上大量精神财富的保存者,在黑暗时代过去后,这些精神财富才传回欧洲。欧洲人主要就是通过他们的译着才了解古希腊和印度以及中国数学的成就。

古希腊数学 (Ancient GreekMathematics)

古代希腊从地理疆城上讲,包括巴尔干半岛南部、小亚细亚半岛西部、意大利半岛南部、西西里岛及爱琴海诸岛等地区。这里长期以来由许多大小奴棣制城邦国组成,直到约公元前325年,亚历山大大帝(Alexanderthe Great)征服了希腊和近东、埃及,他在尼罗河口附近建立了亚历山大里亚城(Alexandria)。亚历山大大帝死后(323B.C.),他创建的帝国分裂为三个独立的王国,但仍联合在古希腊文化的约束下,史称希腊化国家。统治了埃及的托勒密一世(PtolemytheFirst)大力提倡学术,多方网罗人才,在亚历山大里亚建立起一座空前宏伟的博物馆和图书馆,使这里取代雅典,一跃而成为古代世界的学术文化中心,繁荣几达千年之久!
希腊人的思想毫无疑问地受到了埃及和巴比伦的影响,但是他们创立的数学与前人的数学相比较,却有着本质的区别,其发展可分为雅典时期和亚历山大时期两个阶段。

一、雅典时期(600 B.C.-300B.C.)
这一时期始于泰勒斯(Thales)为首的伊奥尼亚学派(Ionians),其贡献在于开创了命题的证明,为建立几何的演绎体系迈出了第一步。稍后有毕达哥拉斯(Pythagoras)领导的学派,这是一个带有神秘色彩的政治、宗教、哲学团体,以「万物皆数」作为信条,将数学理论从具体的事物中抽象出来,予数学以特殊独立的地位。
公元前480年以后,雅典成为希腊的政治、文化中心,各种学术思想在雅典争奇斗妍,演说和辩论时有所见,在这种气氛下,数学开始从个别学派闭塞的围墙里跳出来,来到更广阔的天地里。
埃利亚学派的芝诺(Zeno)提出四个著名的悖论(二分说、追龟说、飞箭静止说、运动场问题),迫使哲学家和数学家深入思考无穷的问题。智人学派提出几何作图的三大问题:化圆为方、倍立方体、三等分任意角。希腊人的兴趣在于从理论上去解决这些问题,是几何学从实际应用向演绎体系靠拢的又一步。正因为三大问题不能用标尺解出,往往使研究者闯入未知的领域中,作出新的发现:圆锥曲线就是最典型的例子;「化圆为方」问题亦导致了圆周率和穷竭法的探讨。
哲学家柏拉图(Plato)在雅典创办著名的柏拉图学园,培养了一大批数学家,成为早期毕氏学派和后来长期活跃的亚历山大学派之间联系的纽带。欧多克斯(Eudoxus)是该学园最著名的人物之一,他创立了同时适用于可通约量及不可通约量的比例理论。柏拉图的学生亚里士多德(Aristotle)是形式主义的奠基者,其逻辑思想为日后将几何学整理在严密的逻辑体系之中开辟了道路。
外国数学史 数学史
二、亚历山大时期(300 B.C.-641A.D.)
这一阶段以公元前30年罗马帝国吞并希腊为分界,分为前后两期。
亚历山大前期出现了希腊数学的黄金时期,代表人物是名垂千古的三大几何学家:欧几里得(Euclid)、阿基米德(Archimedes)及阿波洛尼乌斯(Appollonius)。
欧几里得总结古典希腊数学,用公理方法整理几何学,写成13卷《几何原本》(Elements)。这部划时代历史巨著的意义在于它树立了用公理法建立起演绎数学体系的最早典范。
阿基米德是古代最伟大的数学家、力学家和机械师。他将实验的经验研究方法和几何学的演绎推理方法有机地结合起来,使力学科学化,既有定性分析,又有定量计算。阿基米德在纯数学领域涉及的范围也很广,其中一项重大贡献是建立多种平面图形面积和旋转体体积的精密求积法,蕴含着微积分的思想。
亚历山大图书馆馆长埃拉托塞尼(Eratosthenes)也是这一时期有名望的学者。阿波洛尼乌斯的《圆锥曲线论》(ConicSections)把前辈所得到的圆锥曲线知识,予以严格的系统化,并做出新的贡献,对17世纪数学的发展有着巨大的影响。
亚历山大后期是在罗马人统治下的时期,幸好希腊的文化传统未被破坏,学者还可继续研究,然而已没有前期那种磅礡的气势。这时期出色的数学家有海伦(Heron)、托勒密(Plolemy)、丢番图(Diophantus)和帕波斯(Pappus)。丢番图的代数学在希腊数学中独树一帜;帕波斯的工作是前期学者研究成果的总结和补充。之后,希腊数学处于停滞状态。
公元415年,女数学家,新柏拉图学派的领袖希帕提娅(Hypatia)遭到基督徒的野蛮杀害。她的死标志着希腊文明的衰弱,亚历山大里亚大学有创造力的日子也随之一去不复返了。
公元529年,东罗马帝国皇帝查士丁尼(Justinian)下令关闭雅典的学校,严禁研究和传播数学,数学发展再次受到致命的打击。
公元641年,阿拉伯人攻占亚历山大里亚城,图书馆再度被焚(第一次是在公元前46年),希腊数学悠久灿烂的历史,至此终结。
总括而言,希腊数学的成就是辉煌的,它为人类创造了巨大的精神财富,不论从数量还是从质量来衡量,都是世界上首屈一指的。比希腊数学家取得具体成果更重要的是:希腊数学产生了数学精神,即数学证明的演绎推理方法。数学的抽象化以及自然界依数学方式设计的信念,为数学乃至科学的发展起了至关重要的作用。而由这一精神所产生的理性、确定性、永恒的不可抗拒的规律性等一系列思想,则在人类文化发展史上占据了重要的地位。

美索不达米亚的数学 (Mathematics inMesopotamia)

亚洲西部的底格里斯河与幼发拉底河之间的两河流域,古称为「美索不达米亚」。公元前十九世纪,这里建立了巴比伦王国,孕育了巴比伦文明。
考古学家在十九世纪上半叶于美索不达米亚挖掘出大约50万块刻有楔形文字、跨跃巴比伦历史许多时期的泥书板。其中有近400块被鉴定为载有数字表和一批数学问题的纯数学书板,现在关于巴比伦的数学知识就源于分析这些原始文献。
算术
古代巴比伦人是具有高度计算技巧的计算家,其计算程序是借助乘法表、倒数表、平方表、立方表等数表来实现的。巴比伦人书写数字的方法,更值得我们注意。他们引入了以60为基底的位值制(60进制),希腊人、欧洲人直到16世纪亦将这系统运用于数学计算和天文学计算中,直至现在60进制仍被应用于角度、时间等记录上。
代数
巴比伦人有丰富的代数知识,许多泥书板中载有一次和二次方程的问题,他们解二次方程的过程与今天的配方法、公式法一致。此外,他们还讨论了某些三次方程和含多个未知量的线性方程组问题。
在1900 B.C.-1600B.C.年间的一块泥板上(普林顿322号),记录了一个数表,经研究发现其中有两组数分别是边长为整数的直角三角形斜边边长和一个直角边边长,由此推出另一个直角边边长,亦即得出不定方程的整数解。
几何
巴比伦的几何学与实际测量是有密切的联系。他们已有相似三角形之对应边成比例的知识,会计算简单平面图形的面积和简单立体体积。我们现在把圆周分为360等分,也应归功于古代巴比伦人。巴比伦几何学的主要特征更在于它的代数性质。例如,涉及平行于直角三角形一条边的横截线问题引出了二次方程;讨论棱椎的平头截体的体积时出现了三次方程。
古巴比伦的数学成就在早期文明中达到了极高的水平,但积累的知识仅仅是观察和经验的结果,还缺乏理论上的依据。

罗马和欧洲中世纪的数学 (Mathematics in Roma and medienalEurope)

罗马人活跃于历史舞台上的时期大约从公元前七世纪至公元五世纪。他们在军事上和政治上曾取得极大成功,在文化方面也颇有建树,但他们的数学却很落后,只有一些粗浅的算术和近似的几何公式。著名的科学书籍有维特鲁维尼斯的《建筑十书》(公元前14年)。书中比较注重处理数学问题,使用了建筑物的平面体和立视图,可以看到画法几何的萌芽。此外,罗马人对历法改革也有一定的贡献。
从西罗马帝国灭亡(公元476年)到11世纪称为欧洲的黑暗时期。西欧文化处于低潮,基督教的绝对统治严重地破坏了科学发展。这一时期只出现少数几位热心学术的学者和教士:殉道的罗马公民博埃齐(Boethius),英国的教士学者比德(Bede)和阿尔克温(Alcuin),著名的法国学者、教士热尔拜尔(Gerbert)──他后来成了教皇西尔维斯特二世(PopeSylvester II)。
十二世纪是数学史上的大翻译时期,是知识传播的世纪,由穆斯林保存下来的希腊科学和数学的经典著作,以及阿拉伯学者写的著作开始被大量翻译为拉丁文,并传入西欧。当时主要的传播地点是西班牙和西西里,著名的翻译家有巴思的英国修士阿德拉特(Adelard)、克雷莫纳的格拉多(Gherardo)、切斯特的罗伯特(Robert)等等。
意大利的斐波那契(Fibonacci)是中世纪最杰出的数学家。他早年到各地旅游,经比较后确认印度—阿拉伯数码及其记数法在实用上最为优越,回到家乡后写成《算盘书》(Liberabaci,1202)。这部书是讲算术和初等代数的,虽说实质上是独立的研究,但也表现出受花拉子米(Al-knowarizmi)和阿布卡密耳(AbuKamil)的代数学的影响。这部书对印度─阿拉伯数码的详尽叙述和强列支持,是有助于将这些符号引进欧洲的。斐波那契的另两部著作《实用几何》(Practicageometriae,1220)和《象限仪书》(Liberquadratorum,1225)是专门讨论几何、三角学和不定分析,同样是有独创性的著作。
十四世纪相对地是数学上的不毛之地,这一时期最大的数学家是法国的N·奥雷斯姆(Oresme),在他的著作中,首次使用分数指数,还提出用坐标表示点的位置和温度的变化,出现了变量和函数的概念。他的工作影响到文艺复兴后包括笛卡尔在内的学者。
十二世纪后,欧洲各地出现了许多从原教会学校基础上转变而来的大学。十三世纪上半叶,巴黎、牛津、剑桥、帕多瓦和那不勒斯等地的一些大学里,数学教育开始兴起,这些大学成为后世数学发展的重要基地。

中美洲的数学 (Mathematics in CentralAmerica)

古代美洲文明是世界文明的重要组成部份。公元前1000年左右,中美洲兴起了玛雅文化,公元300-900年间是玛雅文化的全盛时期,之后便渐渐衰弱。对这里数学的了解,主要来自一些残剩的玛雅时代的石刻和几种玛雅文古抄本:德累斯顿抄本、马德里抄本、巴黎抄本等。
早在公元最初的几个世纪里,玛雅人就创立了以地球围绕太阳旋转一周作为一年的「太阴历」,比古代希腊、罗马人的历法还要精确。与此同时,玛雅人创造了独特的以20进位的位值制计数法。玛雅人加减法的运算比较简单,与阿拉伯数码的运算相同。对于乘除法运算,已发现的玛雅文献中还没有见到有关的例子。
玛雅人对形的认识,只能从玛雅古建筑中体会到一些,这些古建筑从外形看都很整齐规范

文艺复兴时期的数学 (Mathematics in theRenaissance)

十四至十六世纪在欧洲历史上是从中世纪向近代过渡的时期,史称文艺复兴时期。中世纪束缚人们思想的宗教观、神学和经院哲学逐步被摧毁,出现了复兴古代科学和艺术的文化运动。在自然科学方面,如哥伦布地理上的大发现、哥白尼的日心说、伽利略在数学物理上的创造发明等革命性事件相继发生。
这一时期,在数学中首先发展起来的是透视法。艺术家们把描述现实世界作为绘画的目标,研究如何把三维的现实世界绘制在二维的画布上。他们研究绘画的数学理论,建立了早期的数学透视法思想,这些工作成为十八世纪射影几何的起点。其中最著名的代表人物有:意大利的达芬奇(Leonardoda Vinci)、阿尔贝蒂(Leone Battista Alberti)、弗朗西斯卡(Piero dellaFrancesca)、德国的丢勒(Albrecht Durer)等。
文艺复兴时期更出版了一批普及的算术书,内容多是用于商业、税收测量等方面的实用算术。印度─阿拉伯数码的使用使算术运算日趋标准化。L·帕奇欧里(Pacioli)的《算术、几何及比例性质之摘要》(Summade arithmetica,geometrica,proportioni etproportionalita,1494)是一本内容全面的数学书;J·维德曼(Widman)的《商业速算法》(1489)中首次使用符号「+」和「-」表示加法和减法;A·里泽(Riese)于1522年出版的算术书多次再版,有广泛的影响;斯蒂文(SimonStevin)的《论十进》(1585)系统阐述了十进分数的理论。
代数学在文艺复兴时期获得了重要发展。最杰出的成果是意大利学者所建立的三、四次方程的解法。卡尔达诺在他的著作《大术》(Arsmagna,1545)中发表了三次方程的求根公式,但这一公式的发现实应归功于另一学者塔尔塔利亚(Tartaglia)。四次方程的解法由卡尔达诺的学生费拉里(Ferrari)发现,在《大术》中也有记载。稍后,邦贝利(Bombelli)在他的著作中阐述了三次方程不可约的情形,并使用了虚数,还改进了当时流行的代数符号。
符号代数学的最终确立是由16世纪最著名的法国数学家韦达(Viete)完成的。他在前人工作的基础上,于1591年出版了名著《分析方法入门》(Inartem analyticamisagoge),对代数学加以系统的整理,并第一次自觉地使用字母来表示未知数和已知数,使代数学的形式更抽象,应用更广泛。韦达在他的另一部著作《论方程的识别与订正》(Deaequationum recognitione etemendatione,1615)中,改进了三、四次方程的解法,还对n=2、3的情形,建立了方程根与系数之间的关系,现代称之为韦达定理。
在文艺复兴时期,三角学也获得了较大的发展。德国数学家雷格蒙塔努斯(Regiomontanus)的《论各种三角形》(Detriangulisomnimodis)是欧洲第一部独立于天文学的三角学著作。书中对平面三角和球面三角进行了系统的阐述,还有很精密的三角函数表。哥白尼的学生雷蒂库斯(GeorgeJoachim Rhaeticus)
文艺复兴时期在文学、绘画、建筑、天文学各领域都取得了巨大的成就。数学方面则主要是在中世纪大翻译运动的基础上,吸收希腊和阿拉伯的数学成果,从而建立了数学与科学技术的密切联系,为下两个世纪数学的大发展作了准备。

日本数学 (Mathematics in Japan)

人类从何时才开始定居于日本列岛,至今仍无定论。公元四世纪中叶,日本建立了第一个统一的国家。在十世纪以前,日本主要吸收外来的文化。中国、朝鲜和印度的文化对日本都有很大的影响,十世纪以后,真正的日本文化才发展起来。日本数学的繁荣则更晚,是十七世纪以后的事。
日本人把受西方数学影响以前,按自己的特点发展起来的数学叫和算,也算日本传统数学。十七世纪后期至十九世纪中叶是和算的兴盛时期。
和算在中国古代数学的影响下发展起来。公元六世纪始,中国的历法和数学就直接或间接地(通过朝鲜)传入日本,日本政府亦多次派留学生到中国唐朝学习数学。到八世纪初,日本已仿照隋唐时期的数学教育制度设立算学博士并采用《周髀算经》、《九章算术》、《孙子算经》、《缀术》等中国古算书作为教材,这是中国数学输入日本的第一个时期。
十三至十七世纪,是中国数学传入日本的第二个时期,《杨辉算法》、《算学启蒙》、《算法统宗》等陆续传入日本,对日本数学的发展有重要的影响。吉田光由的《尘劫记》(1627)使珠算术在日本迅速得到普及,其内容与《算法统宗》极为相似,只是其中许多例题是根据日本的实际情况编写的。这时期还有几本着作是专门介绍和解释《算学启蒙》的。
十七世纪初,日本数学家开始写出自己的著作,如毛利重能的《割算书》(1622)、今村知商的《竖亥录》(1639)等。到十七世纪末期,通过关孝和等人的工作,逐渐形成了日本数学体系──和算。
关孝和在日本被尊为「算圣」,十七世纪末到十八世纪初,以他为核心形成一个学派﹝关流﹞,这一学派的主要成就是「点窜术」和「圆理」。「点窜术」是把由中国传入的天文术改为笔算,并改进了算式的记法,是和算特有的笔算代数学。「圆理」可看作是和算特有的数学分析。建部贤弘求得弧长的无穷级数表达式,又称圆理公式。久留岛义太推广了圆理公式,发展了圆理的极数术(极值问题),并在西方数学家之前发现了欧拉函数和行列式展开定理。关氏学派的第四代大师安岛直圆深入到微积分领域,提出一种求弧长的方法;又将此法推广,形成二重积分,求出了两相交圆柱公共部份的体积。晚期的关氏学派数学家和田宁进一步改进了圆理,使计算弧长、面积、体积等问题更加简化,他使用的方法和现在积分法的原理相近。
除了关氏学派外,还有一些较小的学派。他们总结了和算中的各种几何问题;深入研究了计算椭圆、球面等面积和体积的公式;探讨了代数方程理论等等。
十九世纪中叶,日本政府采取了开国政策,西方数学大量传入。明治维新时期,日本政府实行「和算废止,洋算专用」政策,和算迅速衰废(只有珠算沿用至今),同时开始了近代数学的研究。时至今日,日本已步入世界上数学研究先进国家的行列。

复数的萌芽、形成与发展

发布日期:2009-03-24

我们知道,在实数范围内,解方程是无能为力的,只有把实数集扩充到复数集才能解决。对于复数a+bi(a、b都是实数)来说,当b=0时,就是实数;当b≠0时叫虚数,当a=0,b≠0时,叫做纯虚数。可是,历史上引进虚数,把实数集扩充到复数集可不是件容易的事,那么,历史上是如何引进虚数的呢?
16世纪意大利米兰学者卡当(1501—1576)在1545年发表的《重要的艺术》一书中,公布了三次方程的一般解法,被后人称之为“卡当公式”。
他是第一个把负数的平方根写到公式中的数学家,并且在讨论是否可能把10分成两部分,使它们的乘积等于40时,他把答案写成=40,尽管他认为和这两个表示式是没有意义的、想象的、虚无飘渺的,但他还是把10分成了两部分,并使它们的乘积等于40。给出“虚数”这一名称的是法国数学家笛卡尔(1596—1650),他在《几何学》(1637年发表)中使“虚的数’‘与“实的数”相对应,从此,虚数才流传开来。
数系中发现一颗新星──虚数,于是引起了数学界的一片困惑,很多大数学家都不承认虚数。德国数学家菜不尼茨(1664—1716)在1702年说:“虚数是神灵遁迹的精微而奇异的隐避所,它大概是存在和虚妄两界中的两栖物”。瑞士数学大师欧拉(1707—1783)说;“一切形如,习的数学武子都是不可能有的,想象的数,因为它们所表示的是负数的平方根。对于这类数,我们只能断言,它们既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么,它们纯属虚幻。”然而,真理性的东西一定可以经得住时间和空间的考验,最终占有自己的一席之地。法国数学家达兰贝尔(1717—1783)在1747年指出,如果按照多项式的四则运算规则对虚数进行运算,那么它的结果总是的形式(a、b都是实数)(说明:现行教科书中没有使用记号=-i,而使用=一1)。法国数学家棣莫佛(1667—1754)在1730年发现公式了,这就是著名的探莫佛定理。欧拉在1748年发现了有名的关系式,并且是他在《微分公式》(1777年)一文中第一次用i来表示一1的平方根,首创了用符号i作为虚数的单位。“虚数”实际上不是想象出来的,而它是确实存在的。挪威的测量学家成塞尔(1745—1818)在1779年试图给于这种虚数以直观的几何解释,并首先发表其作法,然而没有得到学术界的重视。
德国数学家高斯(1777—1855)在1806年公布了虚数的图象表示法,即所有实数能用一条数轴表示,同样,虚数也能用一个平面上的点来表示。在直角坐标系中,横轴上取对应实数a的点A,纵轴上取对应实数b的点B,并过这两点引平行于坐标轴的直线,它们的交点C就表示复数a+bi。象这样,由各点都对应复数的平面叫做“复平面”,后来又称“高斯平面”。高斯在1831年,用实数组(a,b)代表复数a+bi,并建立了复数的某些运算,使得复数的某些运算也象实数一样地“代数化”。他又在1832年第一次提出了“复数”这个名词,还将表示平面上同一点的两种不同方法──直角坐标法和极坐标法加以综合。统一于表示同一复数的代数式和三角式两种形式中,并把数轴上的点与实数—一对应,扩展为平面上的点与复数—一对应。高斯不仅把复数看作平面上的点,而且还看作是一种向量,并利用复数与向量之间—一对应的关系,阐述了复数的几何加法与乘法。至此,复数理论才比较完整和系统地建立起来了。

  经过许多数学家长期不懈的努力,深刻探讨并发展了复数理论,才使得在数学领域游荡了200年的幽灵──虚数揭去了神秘的面纱,显现出它的本来面目,原来虚数不虚呵。虚数成为了数系大家庭中一员,从而实数集才扩充到了复数集。

  随着科学和技术的进步,复数理论已越来越显出它的重要性,它不但对于数学本身的发展有着极其重要的意义,而且为证明机翼上升力的基本定理起到了重要作用,并在解决堤坝渗水的问题中显示了它的威力,也为建立巨大水电站提供了重要的理论依据。

  

爱华网本文地址 » http://www.aihuau.com/a/25101014/188486.html

更多阅读

转 :从数学起源到矩阵代数

原文链接今天居士上了研究生生涯的第一堂专业课,授课的是大学四年就看过几次的大牛。第一堂课,居士了解了不少数学史方面的知识。不敢独占,发布出来跟大家一起分享。一、几何和代数的起源。由于生活的需要,几何和代数分别在古希腊和古

4湖北省襄樊市老河口市 湖北省老河口市张小平

老河口市位于湖北省西北部,居汉水中游东岸。全市共辖2个乡8个镇5个办事处,全市面积1032平方公里,其中市区面积27平方公里,总人口49万。1985年,被湖北省政府列为计划单列市。老河口市历史悠久,人杰地灵。老河口建城已有2000多年历史,古称赞

史宁中《数学课程标准》的若干思考 学校课程建设的思考

史宁中教授论文集  (2011-06-10 11:42:42) 转载▼标签: 数学教育专题分类: 数学教育大师论文集《数学课程标准》的若干思考史宁中【作者简介】史宁中 东北师范大学,长春 130024一、制定《数学课程标准》的目的为什么要制定课程标准

怎样学好数学?如何学习数学?

一、该记的记,该背的背,不要以为理解了就行  有的同学认为,数学不像英语、史地,要背单词、背年代、背地名,数学靠的是智慧、技巧和推理。我说你只讲对了一半。数学同样也离不开记忆。试想一下,小学的加、减、乘、除运算要不是背熟了“乘

郑毓信《数学方法论》学习心得之一

郑毓信《数学方法论》学习心得之一余广武《数学方法论》是郑毓信教授1996年的著作,出版至今已有17个年头。在新一轮的课程改革中,这本书的很多观点仍然有很强的指导意义。该书从微观和宏观两个层面论述了波利亚的数学启发法、数学

声明:《外国数学史 数学史》为网友泪湿床分享!如侵犯到您的合法权益请联系我们删除