1 绪论
随着工业技术的日益发展,一般奥氏体不锈钢难以满足应力腐蚀、点腐蚀和缝隙隧洞式腐蚀的要求。为此,冶金工作者进行了大量研究,研制出奥氏体—铁素体型不锈钢,即双相不锈钢。
传统的奥氏体不锈钢在晶间腐蚀、应力腐蚀、点腐蚀和缝隙腐蚀等局部腐蚀方面的抗力不足,尤其是应力腐蚀引起的断裂,其危害性极大。双相不锈钢是近二十年来开发的新钢种。通过正确控制各合金元素比例和热处理工艺使其固溶组织中铁素体相和奥氏体相各约占50%,从而将奥氏体不锈钢所具有的优良韧性和焊接性与铁素体不锈钢所具有的较高强度和耐氯化物应力腐蚀性能结合在一起,使双相不锈钢兼有铁素体不锈钢和奥氏体不锈钢的优点。
所谓双相不锈钢是在其固溶组织中铁素体相与奥氏体相约各占一半,一般量少相的含量也需要达到30%。在含C较低的情况下,Cr含量在18%-28%,Ni含量在3%-10%。有些钢还含有Mo、Cu、Nb、Ti,N等合金元素。该类钢兼有奥氏体和铁素体不锈钢的特点,与铁素体相比,塑性、韧性更高,无室温脆性,耐晶间腐蚀性能和焊接性能均显著提高,同时还保持有铁素体不锈钢的475℃脆性以及导热系数高,具有超塑性等特点。与奥氏体不锈钢相比,强度高且耐晶间副食和耐氯化物应力腐蚀有明显提高。双相不锈钢具有优良的耐孔蚀性能,也是一种节镍不锈钢。
由于两相组织的特点,通过正确控制化学成分和热处理工艺,使双相不锈钢兼有铁素体不锈钢和奥氏体不锈钢的优点,它将奥氏体不锈钢所具有的优良韧性和焊接性与铁素体不锈钢所具有的较高强度和耐氯化物应力腐蚀性能结合在一起,正是这些优越的性能使双相不锈钢作为可焊接的结构材料发展迅速,80年代以来已成为和马氏体型、奥氏体型和铁素体型不锈钢并列的一个钢类。
上世纪30年代就已在瑞典的试验室中研制出双相不锈钢(3RE60、Uranus50等),但是双相不锈钢真正产业化还是在上世纪60年代以后,其发展经历了3代历程。
1.1 我国双相不锈钢的应用
双相不锈钢是根据石油化工中强酸强碱造成的局部点蚀、应力腐蚀以及孔穴式腐蚀现象,一般不锈钢难以胜任的容器、管道以及零部件等而研制的,但由于双相不锈钢除具有很强的各类抗腐蚀性能之外,还具有很好的强度和韧性,为此,在一般民用工程和能源交通方面也逐步得到越来越多的应用,如桥梁、飞机、船舶、汽车以及沿海城市和化工区的装饰建筑等。
1.1.1石油和天然气工业
这是国外应用双相不锈钢的主要领域之一,目前铺设的油气输送管线已有1000km。国内只有南海油田少量使用,全部进口。另外,西气东输工程西起塔里木盆地的集气管线考虑要用双相不锈钢焊管,国内已有条件生产和制造。
炼油工业是最早使用国产双相不锈钢的部门,在南京,镇海,天津,济南等炼化公司多集中用在常减压蒸馏塔的塔顶衬里(或复合板)、塔内构件、空冷器和水冷器等,最长的已使用20年。镇海炼化公司是我国最大的炼油基地,加工能力为1600万t,进入世界百强,冷凝冷却系统中多套设备使用双相不锈钢。
这一领域涉及的范围很宽,工况情况复杂,介质多种多样,也是使用双相不锈钢较早和较多的领域。甲醇是重要的能源化工原料,2002年国内产量210万t,进口量与此相当,国产缺口很大,当然也有少量(数千吨)出口韩国,目前20万t的大型和多套10万t以下的中小型的甲醇合成反应器的触媒管都是采用双相不锈钢,大中型装置采用2205钢管,使用进口管较多,小型装置多采用18-5Mo型国产钢管。
齐鲁石化公司氯乙烯装置的氧氯化反应器中的冷却蛇管的介质条件(HCI,水蒸气)苛刻,目前已使用进口的2205双相不锈钢,使用结果有待观察。
上海石化公司乙烯装置的催化剂再生冷却器采用国产类似DP3钢的00C25Ni7Mo3WCuN双相不锈钢做海水冷却器管,海水出口温度40℃,至今已间歇使用15年,效果很好。河南煤化工厂的粉煤气化装置的数台冷却器都是采用进口2205钢管制造。
1.1.2化肥工业
尿素工业也是最早使用国产双相不锈钢的部门,装置中含氯离子水的换热设备使用得较多,例如尿素装置中CO2压缩机三段冷却器原使用304L奥氏体不锈钢管束,l个月后即因应力腐蚀破裂而泄漏,双相不锈钢可用5年以上,随后一、二段冷却器也都换用了18-5Mo或2205双相不锈钢。
由于双相不锈钢在尿素介质中有良好的抗腐蚀疲劳性能,很适合制造尿素生产的关键设备——甲按泵泵体。国产的00Cr25Ni6Mo2N钢可以通过Huey法的晶间腐蚀倾向检验,己用于黑龙江化肥厂、洞庭氮肥厂(五柱塞式)等大型化肥厂。国内中小化肥厂的甲按泵泵体基本上采用18-5Mo钢制造,也有数十家采用的是高铬含铅双相不锈钢。此外这种钢的泵阀锻件通过了日本JISG0573、G0591硝酸法和硫酸法的检验,批量出口日本,价格要比日本当地生产的便宜。
此外,采用国产OCr25Ni6Mo3CuN时效强化双相不锈钢,利用其耐磨损腐蚀性能,用于尿素装置主工艺管路多种规格的高压截止阀的内件等,效果不错。
1.1.3运输业
最近几年海上化学品运输船行业是国外最大的双相不锈钢用户,消费量约占热轧板的50%。化学品船装载的液体货物多种多样,包括化学和石化产品,食品等,要求船舱材料既能耐腐蚀,又有高的强度。如今2205双相不锈钢已代替316L和317L奥氏体不锈钢,成为海上化学品船的标准用材。
国内在这方面刚刚起步,中国长江航运集团青山船厂采用欧洲建造标准,使用进口的2205钢板,自行制造成功第一艘18500t化学品船,钢板消耗量约1200t,己出口比利时。实现了我国用双相不锈钢建造化学品船零的突破,该厂已形成规模生产能力。
1.1.4 造纸和制盐轻工业
由于双相不锈钢在中性氯化物溶液中有较好的耐孔蚀和缝隙腐蚀的能力,利用这一特点,国内开发了该钢在真空制盐和盐硝联产装置上的应用,20万-30万t制盐厂的大型盐水和芒硝蒸发罐采用了双相不锈钢的衬里和复合板,解决了设备结盐垢和腐蚀问题,最长的已有10年的使用历史。双相不锈钢用于大型真空制盐装置,国内已有成熟的经验。
在制纸浆和造纸业领域,国内几乎是空白,硫酸盐蒸煮法仍多采用低碳钢制造的蒸煮锅,而国外早已普及使用双相不锈钢的蒸煮、漂白等设备,目前国内也有引进,但数量极少。
综上所述,可以看出国内双相不锈钢的使用是有一定局限性的,像国外大量使用双相不锈钢的诸如纸浆和造纸工业、油气工业、运输业、甚至建筑业几个大的领域我们涉及得不多,有的还只是刚刚开始。根据国情,利用双相不锈钢的性能优势,今后除继续扩大在化工和石化等领域的应用外,结合纸浆和造纸工业的技术改造需要开发在这一领域中的应用,至于油气管线目前很难推广,双相不锈钢的价格是太高了但是制造有关油气田需要的耐氯离子和硫化氢的装置像集气管线和换热设备等还是可以采用双相不锈钢,甚至超级双相不锈钢的。海上运输业的发展,化学品船制造业方兴未艾,需要大量大张的钢板,这一缺口有待填平补齐。至于在建筑业方面的应用,至今还完全未涉及,其实滨海的城市雕塑景观和开发2304钢用于民用热水器方面完全可代替304和316奥氏体不锈钢。
1.2 双相不锈钢的优势及应用
1.2.1 与奥氏体不锈钢相比,双相不锈钢的优势如下:
1)屈服强度比普通奥氏体不锈钢高一倍多,且具有成型需要的足够的塑韧性。采用双相不锈钢制造储罐或压力容器的壁厚要比常用的奥氏体减少30-50%,有利于降低成本。
表1-2部分双相不锈钢的牌号及化学成分(质量分数%)
钢号 | 国别 | C | Cr | Ni | Mo | Mn | Si | 其他 | |
第1代 | 3RE60 | 瑞典 | 0.03 | 18.5 | 4.9 | 2.7 | ≤2.0 | — | — |
Uranus50 | 芬兰 | 0.04 | 21.5 | 6.5 | 1.5 | — | — | Cu:1.0-2.0 | |
第2代 | SAF2205 | 瑞典 | 0.03 | 22.0 | 5.5 | 3.0 | ≤2.0 | ≤0.8 | — |
DP-3 | 日本 | 0.03 | 25.0 | 6.5 | 3.5 | W:0.4 | - | Cu:0.20-0.80 | |
08X21H6M2T | 俄罗斯 | ≤0.08 | 21.0 | 7.5 | 2.0 | — | — | Ti:0.2-0.4 | |
0Cr21Ni5Ti | 中国 | 0.06 | 22.0 | 5.8 | - | ≤0.8 | ≤0.8 | Ti:5 | |
第3代 | SAF2507 | 瑞典 | 0.03 | 25.5 | 7.0 | 4.5 | — | — | Cu:0.50 |
DP-3W | 日本 | 0.03 | 25.0 | 7.6 | 3.0 | W:0.4 | — | Cu:0.80 | |
0Cr26Ni5Mo3 | 中国 | ≤0.08 | 26.5 | 5.0 | 3.0 | ≤1.5 | ≤1.0 | — |
2)具有优异的耐应力腐蚀破裂的能力,即使是含合金量最低的双相不锈钢也有比奥氏体不锈钢更高的耐应力腐蚀破裂的能力,尤其在含氯离子的环境中。应力腐蚀是普通奥氏体不锈钢难以解决的突出问题。
3)在许多介质中应用最普遍的2205双相不锈钢的耐腐蚀性优于普通的316L奥氏体不锈钢,而超级双相不锈钢具有极高的耐腐蚀性,再一些介质中,如醋酸,甲酸等甚至可以取代高合金奥氏体不锈钢,乃至耐蚀合金。
4)具有良好的耐局部腐蚀性能,与合金含量相当的奥氏体不锈钢相比,它的耐磨损腐蚀和疲劳腐蚀性能都优于奥氏体不锈钢。
5)比奥氏体不锈钢的线膨胀系数低,和碳钢接近,适合与碳钢连接,具有重要的工程意义,如生产复合板或衬里等。
6)不论在动载或静载条件下,比奥氏体不锈钢具有更高的能量吸收能力,这对结构件应付突发事故如冲撞,爆炸等,双相不锈钢优势明显,有实际应用价值。
1.2.2与铁素体不锈钢相比,双相不锈钢的优势如下
1)综合力学性尤其是塑韧性,不象铁素体不锈钢那样对脆性敏感。
2)除耐应力腐蚀性能外,其他耐局部腐蚀性能都优于铁素体不锈钢。
3)冷加工工艺性能和冷成型性能远优于铁素体不锈钢。
4)焊接性能也远优于铁素体不锈钢,一般焊前不需预热,焊后不需热处理。
5)应用范围较铁素体不锈钢宽。
2SAF2205双相钢接头的基本要求及达到要求的措施
2.1基本要求
焊接接头不存在超过质量标准规定的缺陷,同时力学性能满足焊接结构预期的使用性能要求。不出现焊接热裂纹和冷裂纹,应力腐蚀,点蚀,δ相脆化现象的出现
2.2防止措施
1)双相不锈钢具有良好的焊接性,一般选用与母材成分相同或相近的焊接材料,由于含碳量对抗腐蚀性有很大的影响,因此熔敷金属含碳量不用高于母材。腐蚀性弱或仅为避免锈蚀污染的设备,可选用含Ti或Nb等稳定化元素或超低碳焊接材料。对于耐酸腐蚀性能较高的工件,常选用含Mo的焊接材料。选用适合的焊接材料不会发生焊接热裂纹和冷裂纹,如选用焊条型号E309MoL-16焊条牌号A042氩弧焊焊丝H00Cr18Ni14Mo2。
2)合理设计焊接接头。避免腐蚀介质在焊接接头部位聚集,降低或消除应力集中,消除或降低焊接接头残余应力,用常用工艺措施,加热温度在800-900℃之间才可得到比较理想的消除应力效果;结构设计时要尽量采用对接接头,避免十字交叉焊缝,单V形坡口改用Y形坡口。
3)采用小的热输入,即小电流,大的焊接速度,减少横向摆动,待前一道焊缝冷却到预热温度后,再焊下一道焊缝,焊后进行750-800℃退火处理,退火后应快冷,防止出现δ相和475℃脆化。
3SAF2205双相钢的焊接性及焊接中可能存在的问题
3.1SAF2205双相钢的焊接性
3.1.1SAF2205双相钢的性能特点
1)含钼双相不锈钢在低应力下有良好的耐氯化物应力腐蚀性能。一般18-8型奥氏体不锈钢在600℃以上中性氯化物溶液中容易发生应力腐蚀断裂,在微量氯化物及硫化氢工业介质中用这类不锈钢制造的热交换器、蒸发器等设备都存在着产生应力腐蚀断裂的倾向,而双相不锈钢却有良好的抵抗能力。
2)含钼双相不锈钢有良好的耐孔蚀性能。在具有相同的孔蚀抗力当量值(PREN=Cr%+3.3Mo%+16N%)时,双相不锈钢与奥氏体不锈钢的临界孔蚀电位相仿。双相不锈钢与奥氏体不锈钢耐孔蚀性能与AISI316L相当。含25%Cr的,尤其是含氮的高铬双相不锈钢的耐孔蚀和缝隙腐蚀性能超过了AISI316L。
3)具有良好的耐腐蚀疲劳和磨损腐蚀性能。在某些腐蚀介质的条件下,适用于制作泵、阀等动力设备。
4)综合力学性能好。有较高的强度和疲劳强度,屈服强度是18-8型奥氏体不锈钢的2倍。固溶态的延伸率达到25%,韧性值AK(V型槽口)在100J以上。
5)可焊性良好,热裂倾向小,一般焊前不需预热,焊后不需热处理,可与18-8型奥氏体不锈钢或碳钢等异种焊接。
6)含低铬(18%Cr)的双相不锈钢热加工温度范围比18-8型奥氏体不锈钢宽,抗力小,可不经过锻造,直接轧制开坯生产钢板。含高铬(25%Cr)的双相不锈钢热加工比奥氏体不锈钢略显困难,可以生产板、管和丝等产品。
7)冷加工时比18-8型奥氏体不锈钢加工硬化效应大,在管、板承受变形初期,需施加较大应力才能变形。
8)与奥氏体不锈钢相比,导热系数大,线膨胀系数小,适合用作设备的衬里和生产复合板。也适合制作热交换器的管芯,换热效率比奥氏体不锈钢高。
9)仍有高铬铁素体不锈钢的各种脆性倾向,不宜用在高于3000C的工作条件。双相不锈钢中含铬量愈低,σ等脆性相的危害性也愈小。
3.1.2SAF2205双相钢的组织特点
目前双相不锈钢由于冶炼质量要求高,价格较贵,故产量不高,约占世界不锈钢产量的1%,但上世纪90年代以后增加较快, 1990年产量约10万t,1999年已达11万t,2000年约为20万t。
我国在上世纪60年代开始研究双相不锈钢,主要有低铬(Cr18)、中铬(Cr22)和高铬(Cr25)3种,主要产品是管、板和复合板,产量都不大,约2000t,2001年双相不锈钢的消费量约4000t,有1/2随工程进口。
双相不锈钢的组织,根据W(Ni)eq,W(Cr)eq和Schaeffer图,一般奥氏体(A)和铁素体(F)的比例约为60%:40%,但实际上由于化学成分和固溶处理的温度偏差,可能出现;A或F≥70%,对性能会有一定影响,因此,最好控制在各为50%。
表3-2不表同组织类别不锈钢的力学性能
组织类型 | 钢种 | 热处理状态 | 力学性能 | 硬度 | ||
σs/MPa | σb/Mpa | δ5(%) | ||||
奥氏体 | 0Cr18Ni9 | 920-1150。C 固溶、快冷 | 205-300 | 520-580 | ≥40 | 200 |
奥氏体+铁素体 | SAF2205 | 950-1100。C 固溶、水冷或快冷 | 550-580 | 750-780 | 30 | 220 |
DP-3W | 560-590 | 760-780 | 20 | 270 | ||
0Cr26Ni5Mo2 | 400-450 | 620-650 | 20 | 250 | ||
铁素体 | 00Cr18Mo2 | 800-1050。C 退火、快冷 | 250-270 | 420-450 | 30 | 200 |
双相不锈钢具有很强的抗局部孔蚀、点蚀和缝隙孔穴式腐蚀的能力,主要是由化学成分中的Mo,N等元素起的作用。经多年研究,建立了一个抗孔蚀当量指数PREN(PREN=ωCr+3.3ω Mo+16 ω N)来评价,其值越高,抗局部孔蚀的能力越强。
双相钢的一个显著特点就是其双相组织。除此之外, 还常伴有其他相组织的产生,这些次生相也或多或少的影响钢材的性能。对双相钢来说,特殊的合金元素组成是保证构成双相及各相比例的基础, 通过主要元素的含量,可以预测金相组的相比例。目前, 国际上使用较多的是美国焊接研究会WRC提出的WRC一92组织图 (见图3-1)
表3-3部分奥氏体钢及双相不锈钢的成分及PREN值
组织 | 钢种 | 化学成分(质量分数) %) | PREN | ||||
C | Cr | Ni | Mo | N | |||
奥氏体 | 308L | 0.03 | 20 | 10 | — | — | 20 |
316L | 0.03 | 18 | 12 | 2 | — | 25 | |
双相不锈钢 | 2205 | 0.03 | 22 | 5 | 3 | 0.15 | 34 |
255 | 0.03 | 25 | 6 | 3 | 0.20 | 38 | |
2507 | 0.03 | 25 | 7 | 4 | 0.25 | 42 |
A一奥氏体;AF一奥氏体一铁素体;
FA一铁素体一奥氏体;F一铁素体;
Creq= Cr%+Mo%+0.7×Nb%
Nieq=Ni%+35×C%+20×N%+0.25×Cu%
从图3-1可看出, 铬、铂、妮是主要的铁素体相形成元素,而镍、碳、氮、铜是主要的奥氏体相形成元素。改变这些元素的含量, 即可改变固溶组织中的相比例。
除了不同元素的组成及比例影响相比例外,热处理也将在一定程度上影响相的比例。双相钢在高温下(1300℃以上),呈现单一的高温铁素体组织,即δ相。但冷却过程中粗大的δ相阿会转变成常温铁素体相(α相)和奥氏体相(γ相)。由于α相与γ相的生成条件、速度不同,因而不同的冷却起点温度及冷却方式速度会使α相与γ相有不同的最终比例, 而且其组织特征也不同。其实, 热处理对相比例的影响是有限的,但对二次相(对钢材性能的影响比较大)的生成才是至关重要的。
常用的双相钢常会在冷却过程中出现二次相。主要的二次相有二次奥氏体、碳化物、δ相、χ相、R相等。
1)二次奥氏体(γ2)。双相钢冷却时会在铁素体相中析出γ2。γ2相具有一定的奥氏体相特征,会促进σ相的生产。
2)碳化物(M23C6)的存在不利于钢材的耐蚀性。快速冷却可避免M23C6的生成。
3) δ相硬而脆, 可显著降低钢材的塑性和韧性。δ相富含铬, 使其周围因铬而耐腐蚀性降低。鉴于此,δ相是一种危害最大的二次相。以急冷方式快速通过该温度区间, 可有效避免δ相的产生。
4) χ相、R相、都是在一定的温度区间(550℃-750℃) 析出的金属间相, 富铬和钼, 硬而脆,易降低钢材的耐腐蚀性。但与δ相相比, 析出的量较少, 因此其危害低于δ相。
3.1.3 耐腐蚀性能
开发双相钢就是解决奥氏体不锈钢腐蚀开裂性能的问题, 并同时获得高强度。
(1)均匀腐蚀。一般来讲, 双相组织并不利于钢材耐电化学腐蚀,因为可能出现电偶腐蚀。在某些强氧化性酸和强还原性酸中, 其耐腐蚀性有时不如奥氏体, 但有时比奥氏体还好。在有机酸中,它和奥氏体不锈钢一样都具有良好的耐腐蚀性。在碱液中, 其耐腐蚀性相对较差些。
(2)孔蚀是一种局部腐蚀, 也是不锈钢最有害的腐蚀型式之一,它往往成为应力腐蚀开裂和疲劳腐蚀开裂的根源。目前比较流行的是通过孔蚀指数(PREN)来评价钢材的耐孔蚀性能。即将耐孔蚀的几个主要元素折合成铬含量的当量,通过铬含量的当量(PREN)来判断钢材的耐孔蚀性能:PREN=Cr%+3.3xMo%+16xN%因此, 对于钢材的抗孔蚀性能,除了考虑其值外, 还要在生产过程中力求避免相的生成, 减少金属夹杂物。
(3)晶间腐蚀。双相钢几乎不发生晶间腐蚀敏化, 即使是在焊后空冷条件下。
(4)应力腐蚀。双相组织的存在, 使得双相钢抗应力腐蚀开裂的性能要优于奥氏体不锈钢及铁素体钢。
总的说来, 双相钢的抗均匀腐蚀性能、抗孔蚀性能、抗缝隙腐蚀性能与奥氏体不锈钢相比并没有优越太多,但其抗晶间腐蚀性能、抗应力腐蚀性能则明显优于奥氏体不锈钢。
3.1.4 力学性能
1)强度。在双相钢中, 由于铁素体相约占二分之一,故其强度明显高于奥氏体不锈钢。双相钢的强度比奥氏体不锈钢高约三分之一。
2)塑性和韧性。在双相钢中, 由于奥氏体相约占二分之一,故其塑性和韧性优于铁素体不锈钢。另外由于奥氏体相的存在, 使得容易产生脆性化合物的碳、氮等在铁素体相中溶解度降低,从而降低了脆性相的发生。同时, 因两相同时存在,可阻止或缓解高温下晶粒的长大, 也可阻止或缓解裂纹的扩展,从而提高了钢材的塑性和韧性。
但与奥氏体不锈钢相比, 由于铁素体相的存在, 使得其塑性和韧性相对较低,尤其是铁素体相中易产生δ相、χ相、R相、∏相等脆性相, 如果处理不当, 会严重影响钢材的塑性和韧性。
3.1.5 加工性能
工程上应用较多的加工方法有冶炼、铸造、热变形加工、冷变形加工、机加工、热处理、焊接等。
1)冶炼。双相钢的冶炼比奥氏体或铁素体钢的难度大, 控制要求高。目前,双相钢最低要求应采用或进行精炼的。
2)铸造。基于与冶炼同样的道理, 铸造难度也大于一般奥氏体和铁素体钢材,而且难度比冶炼更大。除此之外, 由于两相组织的原因, 在浇铸时还要采取有效的措施,以避免比奥氏体钢更容易出现的铸造裂纹两相凝固差别的原因、气孔加氮的原因等问题。
3)热变形加工。双相钢具有的两相组织使其热变形加工的难度要远大于奥氏体不锈钢。冷变形加工。双相钢的冷变形加工的难度要远大于奥氏体不锈钢。
4)机加工。就常用的工程材料而言, 都不存在较大的加工难度,双相钢也不例外。热处理。热处理对双相钢性能还有一些特殊影响。①不同的热处理参数, 可得到不同的相比例, 直接影响钢材性能②通过热处理,可以改变加工过程中的元素分配比例, 改善甚至消除加工过程中次生相带来的不利影响,从而影响到钢材的最终机械性能和耐腐蚀性能等③热处理过程也会使钢材产生新的次生相, 也会导致元素在各相中的重新分配。因此,不恰当的热处理会使钢材的性能恶化
最早限制双相钢应用的主要原因就是焊接问题, 而工程上又往往不可避免焊接过程。
双相钢焊接的难点就在于其焊接接头是否仍能获得与母材相同或相近的两相组织,这也是保证焊接接头是否具有与母材同样性能(包括力学性能和耐腐蚀性能)等的关键所在。这里所说的焊接接头包括焊缝熔合区、高温热影响区(HTHAZ)和低温热影响区(LTHAZ)。
1)焊缝熔合区。该区域的两相组织相对容易控制 即通过选择合适的焊接材料就能做到.
2)高温热影响区。它是指具有约1250℃熔点这一温度特征的区域。这一区域很窄,却是其相组织最难控制的一个区域。因为母材的成分不能因其而有过多的奥氏体形成元素,而该区域的温度特征又使其高温铁素体在冷却过程中部分得不到向奥氏体转化。应采用较大的焊接线量,使焊缝冷却速度降低,使高温铁素体有一定的时间向奥氏体转化, 从而使相组织均衡。
3)低温热影响区。由于该区域的温度较低,不足以引起基本相的变化, 但可能会发生二次相的产生。因此,采用合适的焊接线量并控制层间温度是防止低温热影响区性能变坏的主要手段。
值得一提的是, 双相钢一般不进行焊后热处理
双相不锈钢的焊接性兼有奥氏体钢和铁素体钢各自的优点,并减少了其各自的不足之处。
1) 热裂纹的敏感性比奥氏体钢小得多。
2) 冷裂纹的敏感性比一般低合金高强钢也小得多。
3)双相不锈钢焊接时主要问题不在焊缝,而在热影响区,因为在焊接热循环作用下,热影响区处于快冷非平衡态,冷却后总是保留更多的铁素体,从而增大了腐蚀倾向和氢致裂纹(脆化)的敏感性。
4)双相不锈钢焊接接头有析出%相脆化的可能,δ相是Cr和Fe的金属间化合物,它的形成温度范围600-1000.C,不同钢种形成δ相的温度不同,如00Cr18Ni5Mo3Si2钢在800-900.C,而双相不锈钢00Cr25Ni7Mo3CuN的在800-900.C,8500.C时最敏感。形成%δ相需经一定的时间,一般1-2min萌生1-2minδ相增多并长大,因此,焊接时应采用小热输入,快速冷却,消应力处理时应采用较低的温度,如550-600.C为宜。
5)双相不锈钢含有50%的铁素体,同样也存在475.C脆性,但不如铁素体不锈钢那样敏感,双相钢中的铁素体在300-525.C之间长期保温会析出高铬α,相,而在475.C最敏感,使双相钢发生脆化,由于α,相析出时间较长,故对一般焊接影响不大,但应限制双相不锈钢的工作温度不高于250.C。
双相不锈钢的焊接件,由于工艺不当,一旦产生δ相或析出α,相引起475.C脆性,则可采用固溶处理使之消除。
双相不锈钢的扩散氢含量不及奥氏体不锈钢,因此焊材中或周围环境中氢的质量浓度较高时,则会在焊接双相不锈钢时出现氢致裂纹和脆化。
3.2焊接中可能存在的问题
1)SAF2205双相钢的δ相脆化
在Fe-Cr二元合金中,δ相中含Cr约为25%,形成温度为520-820℃,有很多合金元素可置换δ相中的Fe和Cr原子,从而使δ相生成于稳定的温度区间和几率增大。δ相析出主要在相中进行,如果δ相含有较多的Mo时,即可提高δ稳定存在温度区,又能加速δ相的析出过程。高铬双相不锈钢容易产生δ相脆化现象。
表3-1双相不锈钢固溶处理及σ相和475.C脆性的温度范围
内容 | 2205双相钢及 2507等 | 超级双相钢 00Cr25Ni7Mo3CuN等 |
固溶处理温度/。C | 1040 | 1025-1100 |
在空气中加热 起皮温度/。C | 1000 | 1000 |
δ相形成温度/。C | 600-1000 | 600-1000 |
475.C脆化温度/。C | 300-525 | 300-525 |
2)焊接接头的氢脆和氢致裂纹
双相不锈钢凝固结晶为单相铁素体,但是一般的拘束条件下,焊缝金属的热裂纹很小。当δ/γ适当时,冷裂纹敏感性也较低,但双相不锈钢中毕竟含有较高的δ相,当拘束度较大及焊缝金属含氢量较高时,还存在氢致裂纹的危险。通过对模拟焊接热影响区的试棒研究了双相不锈钢的氢脆与显微组织之间的关系,并采用断裂应变评定了氢脆敏感性,结果表明氢脆主要发生于δ相,而且氢脆的敏感性随峰值温度的升高而增加。
3)焊接接头的应力腐蚀开裂
从双相不锈钢应力与断裂时间的延迟破坏之间的关系可知,母材的临界应力达到破坏应力的90%,氢脆应力腐蚀开裂的敏感性很低,焊缝金属的临界应力为破坏应力的70%,相当于δ0.2的95%,由于焊缝周围的残余应力可以超过δ0.2,因此焊接接头容易产生腐蚀开裂。
4)焊接接头的点蚀
由于冷却速度对点蚀点位的影响较为显著,因此,同样的含N量在冷却速度不同的条件下点蚀电位相差很大。由此可见,含N量较低的双相不锈钢的点蚀电位对冷却速度很敏感,在焊接含N量较低的双相不锈钢时对冷却速度的控制要求更严。
4 2205双相钢的焊接工艺
为了取得良好的焊接质量, 焊接人员应掌握双相钢的焊接特点和注意事项,另外从腐蚀的角度来看,焊接接头总是不锈钢结构的最薄弱环节,实际上管道最终的耐蚀水平是由焊工决定的,为了尽可能的取得良好的结果,焊接操作过程应当遵守一些基本规则。总结出的SAF2205DSS一些关键技术如下。
1)焊前准备采用机加工制备试板坡口,用不锈钢专用砂轮片打磨坡口及坡口两侧各30mm范围,并用丙酮清洗,以除去氧化膜、油污。
2) 焊接方法 一般的焊接方法, 如焊条电弧焊、钨极氩弧焊和熔化极气体保护焊埋弧焊等,都可用于双相不锈钢的焊接。焊条电弧焊时最常用的焊接工艺方法,其特点灵活方便,并可实现全位置焊接,因此焊条电弧焊时焊接修复的常用工艺方法。钨极氩弧焊的特点时焊接质量优良,自动化的焊接效率也较高,因此广泛用于管道的封底焊缝及薄壁管道的焊接。钨极氩弧焊的保护气体通常采用纯Ar,当进行管道封底焊时,应采用Ar+2%N2或Ar+5%N2保护气体,同时还应采用纯Ar或高纯N进行焊缝背面保护,以防止根部焊道的铁素体化。熔化极气体保护焊的特点时较高的熔敷效率,即可采用较灵活的半自动焊,也可实现自动焊。
3) 焊材的选择对于焊条电弧焊,根据耐腐蚀性,接头韧性的要求即焊接位置,可选用酸性或碱性焊条。采用酸性焊条时,脱渣优良,焊缝光滑,接头成形美观,但是焊缝金属的冲击韧性较低,于此同时,为了防止焊接气孔及焊接氢致裂纹需严格控制焊条中的含氢量。当要求焊缝金属具有较高的冲击韧度,并需进行全位置焊接时,应采用碱性焊条。另外,在根部封底焊时,通常采用碱性焊条,当对焊缝金属的耐腐蚀性能有特殊要求时,还应采用超级双相钢成分的碱性焊条。对于实芯气体保护焊焊丝,在保证焊接金属具有良好的耐腐蚀性与力学性能的同时,还应注意其焊接工艺性能。对于药芯焊丝,当要求焊缝光滑,接头成形美观时,可采用金红石型或钛-钙型药芯焊丝。当要求较高的冲击韧度或在较大的拘束条件下焊接时,宜采用碱度较高的药芯焊丝。对于埋弧焊焊丝,宜采用直径较小的焊丝,实现中小焊接规范下的多层多道焊,以防止焊接热影响区的脆化,与此同时,应采用配套的碱性焊剂,以防止焊接氢致裂纹。焊接材料要选用比母材含镍量高的双相钢焊材,确保焊缝中奥氏体相占优势,焊缝铁素体含量控制在30%~45%为宜。
4) 焊接工艺参数的选择 焊接线能量太大或太小都不好, 一般控制在0.5~2.5kJ/cm范围,其具体大小要根据焊件厚度选择。一般焊接时不需要预热, 但焊件壁厚过大或环境温度过低时,为防止冷速过快造成焊缝和热影响区铁素体含量过高, 必要时要采取预热措施。为避免冷却速度过低而引起析出相的产生,多层/多道焊的层间温度要控制。
5) 焊接熔池及背面的保护 气体保护焊时保护气体中加氮可以提高焊缝的耐蚀性。有效的背面气体保护是保证焊接质量的前提,保护气体的纯度应满足工艺要求, 应采取有效的背面保护工装,开始焊接时要对焊缝背面的氧含量进行检测,满足工艺要求后才能开始焊接。
6) 定位焊缝定位焊缝焊接时,如果长度过短,焊接未建立起平衡过程即结束,焊缝冷却会很快,可能导致铁素体含量过高、低韧性并因氮化物析出而降低耐腐蚀性能。因此,如采用定位焊,对定位焊缝的最短长度应进行规定, 且应采用较大热输入规范参数。
7) 焊接过程材料的保护 材料表面的弧击和起弧, 是一个瞬间的高温过程, 冷却速度很快,表面显微组织中铁素体含量很高,这种组织对裂纹和腐蚀很敏感, 应尽力避免, 如果产生必须用细砂轮打磨去除。现场焊接过程中材料的保护非常重要,应避免碳钢、铜、低熔点金属或其它杂质对不锈钢的污染, 可能情况下,不锈钢和碳钢管应分开存放和焊接。焊接和切割过程中应采取措施防止飞溅、弧击、渗碳、局部过热等。
5 焊接工艺评定
5.1 SAF2205 双相不锈钢管焊接工艺指导书
SAF2205 双相不锈钢管焊接工艺指导书
单位名称 河南机电高等专科学校 焊接工艺指导书编号 GY001 日期4月22日 焊接工艺评定报告编号PD001 焊接方法 手工TIG焊+焊条电弧焊机械化程度半自动化 | ||||||||||||||||||||||||||||||||||||||||||||||
焊接接头: 坡口形式Y型坡口 衬垫(材料及规格)—— 其他—— | 简图: | |||||||||||||||||||||||||||||||||||||||||||||
母材:SAF2205与SAF2205相焊 厚度范围: 母材:对接焊缝8mm角焊缝—— 管子直径、壁厚范围:对接焊缝 —— 角焊缝 —— 焊缝金属厚度范围: 对接焊缝 — 其他 ———— | ||||||||||||||||||||||||||||||||||||||||||||||
焊接材料:
耐蚀堆焊金属化学成分(%) | ||||||||||||||||||||||||||||||||||||||||||||||
C | Si | Mn | P | S | Cr | Ni | Mo | V | Ti | Nb | ||||||||||||||||||||||||||||||||||||
其他: | ||||||||||||||||||||||||||||||||||||||||||||||
焊接位置 对接焊缝位置:_平焊 焊接方向:(向上、向下 角焊缝位置______ 焊接方向:(向上、向下) | 焊后热处理: 温度范围(℃)—— 保温时间(h)—— | |||||||||||||||||||||||||||||||||||||||||||||
预热: 预热 (℃) (允许最低值) _ __100℃_ 层间温度(oC)(允许最高值) _——_ 保持预热时间___2h 加热方式_氧乙炔_ | 保护气体: 气体种类 混合比流量(L/min) 保护气__氩气_>99.9%18~24 尾部保护气—————— 背面保护气__——__—— __——_ | |||||||||||||||||||||||||||||||||||||||||||||
电特性: 电流种类:直流极性:反接 焊接电流范围:(A)280~320电弧电压(V):26~30 (按所焊位置和厚度,分别列出电流电压范围,记入下表) | ||||||||||||||||||||||||||||||||||||||||||||||
焊道/焊层 | 焊接 方法 | 填充材料 | 焊接电源 | 电弧 电压 | 焊接 速度 (cm/min) | 线能量 (kJ/cm) | ||||||||||||||||||||||||||||||||||||||||
牌号 | 直径 | 极性 | 电流 (A) | |||||||||||||||||||||||||||||||||||||||||||
1 | 手工TIG焊 | H00Cr18Ni14Mo2 | 2.0mm | 反接 | 280 | 27 | 40 | 11.34 | ||||||||||||||||||||||||||||||||||||||
2 | 焊条电弧焊 | A042 | 3.2mm | / | 300 | 30 | 45 | 12 | ||||||||||||||||||||||||||||||||||||||
3 | 焊条电弧焊 | A042 | 3.2mm | / | 320 | 30 | 47 | 12.2 | ||||||||||||||||||||||||||||||||||||||
钨极类型及直径:铈钨极喷嘴直径(mm):Φ5mm 熔滴过渡形式:射流过渡焊丝送进速度(cm/min):40~47 | ||||||||||||||||||||||||||||||||||||||||||||||
技术措施: 摆动焊或不摆动焊:不摆动摆动参数:—— 焊前清理和层间清理:——背面清根方法:机械清根 单道焊或多道焊(每面): 正二反一单丝焊或多丝焊:单丝焊 导电嘴至工件距离(mm)3~5锤击:—— 其他:—— | ||||||||||||||||||||||||||||||||||||||||||||||
编制 | 日期 | 4月22日 | 审核 | 日期 | 批准 | 日期 | ||||||||||||||||||||||||||||||||||||||||
焊接工艺评定报告
单位名称:河南机电高等专科学校 焊接工艺评定报告编号.:PD001焊接工艺指导书编号 :GY001 焊接方法:手工TIG焊+焊条电弧焊机械化程度:半自动化 | ||||||||||||||||||||||||
接头简图: | ||||||||||||||||||||||||
母材: 材料标准: 类、组别号: SAF2205 与类、组别号:SAF2205相焊 厚度: 8mm 直径:—— 其他:—— | 焊后热处理: 热处理温度(℃):—— 保温时间 (h):—— | |||||||||||||||||||||||
保护气体: 气体种类 混合比 流量 (L/min) 保护气体氩气 ≥99.9%18~24 尾部保护气—— 背面保护气—— | ||||||||||||||||||||||||
填充金属: 焊材标准 焊材牌号:H00Cr18Ni14Mo2 焊材规格:Φ2.0mm 焊缝金属厚度;—— 其他:—— | 电特性: 电流种类:直流 极性:反接 钨极尺寸:铈钨极Φ5mm 焊接电流 (A):280~320 电弧电压 (V):26~30 其他:—— | |||||||||||||||||||||||
焊接位置: 对接焊缝位置:——方向 (向上, 向下) 角焊缝位置:——方向(向上, 向下) | 技术措施: 焊接速度(cm/min):40~47 摆动或不摆动:不摆动 摆动参数:—— 多道焊或单道焊(每面):正二反一 多丝焊或单丝焊:单丝焊 其他:—— | |||||||||||||||||||||||
预热: 预热温度(℃):100 层间温度 (℃):—— 其他:—— | ||||||||||||||||||||||||
拉伸试验:试验报告编号:LS001 | ||||||||||||||||||||||||
试样编号 | 试样宽度(mm) | 试样厚度(mm) | 横截面积 (mm2) | 断裂载菏 (kN) | 抗拉强度 (Mpa) | 断裂部位和特征 | ||||||||||||||||||
LS001-1 | 8 | 15 | 120 | 60 | 500 | 焊缝区 | ||||||||||||||||||
LS001-2 | 10 | 15 | 150 | 82.5 | 550 | 熔合区 | ||||||||||||||||||
弯曲试验试验报告编号:WQ001 | ||||||||||||||||||||||||
试样编号 | 试样类型 | 试样厚度 (mm) | 弯心直径 (mm) | 弯曲角度 (o) | 试验结果 | |||||||||||||||||||
WQ001-1 | 面弯 | 15 | 60 | 180 | 22% | |||||||||||||||||||
WQ001-2 | 面弯 | 10 | 40 | 180 | 20% | |||||||||||||||||||
试样编号 | 试样类型 | 试样厚度 (mm) | 弯心直径 (mm) | 弯曲角度 (o) | 试验结果 | |||||||||||||||||||
WQ001-3 | 背弯 | 15 | 60 | 180 | 23% | |||||||||||||||||||
WQ001-4 | 背弯 | 15 | 60 | 180 | 22% | |||||||||||||||||||
WQ001-5 | 侧弯 | 15 | 60 | 180 | 20% | |||||||||||||||||||
WQ001-6 | 侧弯 | 15 | 60 | 180 | 21% | |||||||||||||||||||
冲击试验试验报告编号.:CJ001 | ||||||||||||||||||||||||
试样编号 | 试样尺寸 | 缺口类型 | 缺口位置 | 试验温度 (℃) | 冲击吸收功 (J) | 备注 | ||||||||||||||||||
CJ001-1 | 15 | 热影响区 | 20 | 28 | 合格 | |||||||||||||||||||
CJ001-2 | 15 | 热影响区 | 20 | 29 | 合格 | |||||||||||||||||||
CJ001-3 | 15 | 热影响区 | 20 | 26 | 合格 | |||||||||||||||||||
CJ001-4 | 15 | 焊缝区 | 20 | 30 | 合格 | |||||||||||||||||||
CJ001-5 | 15 | 焊缝区 | 20 | 27 | 合格 | |||||||||||||||||||
CJ001-6 | 15 | 焊缝区 | 20 | 25 | 合格 | |||||||||||||||||||
金相检验(角焊缝): 根部: (焊透、未焊透)焊透焊缝: (熔合、未熔合)熔合 焊缝、热影响:(有裂纹、无裂纹):无裂纹 | ||||||||||||||||||||||||
检验截面 | I | II | II | IV | V | |||||||||||||||||||
焊脚差(mm) | —— | —— | —— | —— | —— | |||||||||||||||||||
无损检验: RT:100%UT:—— MT:——PT:100% 其他:—— 耐蚀堆焊金属化学成分(重量 %) | ||||||||||||||||||||||||
C | Mn | Si | P | S | Cr | Ni | Mo | V | Ti | Nb | ||||||||||||||
分析表面或取样开始表面至熔合线的距离(mm):—— | ||||||||||||||||||||||||
附加说明: | ||||||||||||||||||||||||
结论:本评定按JB4708—2000规定焊接试件、检验试样、测定性能,确认试验记录正确 评定结果: (合格、不合格) 合格 | ||||||||||||||||||||||||
5.2 确定SAF2205双相不锈钢管焊接工艺
SAF2205双相不锈钢是现代双相不锈钢中的一种,用途广泛,具有优良的力学性能、耐蚀性能,以及良好的焊接性,在石油天然气输送、海洋工程、化学工业等行业具有广阔的应用前景。石油和天然气工业目前采用双相不锈钢材料铺设的油气输送管线长度已超过850km,绝大部分为2205DSS[1 ] 。西气东输某气源工程由于输送天然气介质的腐蚀性强,高压管道采用2205双相不锈钢材料。双相不锈钢优良的性能是靠适当比例的两相组织来保证的,焊接工艺参数对焊缝的组织有很大的影响,合适的焊接工艺参数和一定的技术措施相结合才能保证焊缝及热影响区的组织和性能。钢管制作焊接是关键工序之一;天然气管道的现场施工,焊接是最主要、最关键的工作之一。本文对D508×1519mm 规格钢管制管纵缝和现场环焊缝焊接工艺评定进行介绍。
5.2.1工艺评定试件的焊接
钢管纵缝和环缝工艺评定试件分别采用Outo2kumpu 公司(原瑞典Avesta) 生产的1519mm厚平板和D508 ×1519mm 钢管,其主要合金元素是Cr 、Ni 、Mo 和N ,其重量百分比分别为: 22 %Cr、5 %Ni、3 %Mo 和1.5 %N ,其显微组织为具有大约50 %的铁素体和大约50%的奥氏体双相组织,其主要力学性能值见表5-1。
表5-1 工艺评定试件母材的力学性能(横向)
抗拉强度Rm/MPa | 屈服强度Rp012/MPa | 延伸率A/ % | 夏比冲击功Akv/ J | 硬度PHB |
761 | 599 | 26 | 276(-20℃) | 290 |
钢管纵缝焊接在钢管制造厂进行,工艺评定试件焊接采用双面埋弧焊方法,采用瑞典Sandvik公司生产的埋弧焊和焊剂,焊接位置为45°固定,由于钢管产品焊缝最终要进行固溶处理,因此,工艺评定试件也进行相应的焊后固溶处理(加热1050~1100℃,水淬) 。
钢管环缝焊接在现场进行,工艺评定试件焊接采用单面焊, 采用钨极氩弧焊( TIG) 打底+焊条电弧焊(SMAW) 填充和盖面方法,使用瑞典Avesta公司生产的氩弧焊丝和焊条,焊接位置为45°固定,试件焊后不进行热处理。焊接规范采用适中的工艺参数。焊接工艺评定试件焊接主要条件见表5-2。
5.2.2工艺评定性能试验结果及其分析
工艺评定性能按工程技术条件进行。试验项目包括常规的接头拉伸、导向弯曲和低温(- 40℃)夏比冲击试验、金相组织检验和腐蚀性能试验。工艺评定主要性能试验。
与奥氏体不锈钢相比,2205DSS材料导热系数线膨胀系数小,又包含两种组织,因此热裂倾向和变形小;与低合金高强钢相比,因组织中含有约50%的奥氏体,因此冷裂纹倾向小。总之,2205DSS可焊性良好。
双相不锈钢优良的性能是靠适当比例的两相组织来保证的。焊接工艺参数对焊缝的组织有很大的影响。焊接过程采用的线能量过低,工件冷却速度过快,焊缝及热影响区会产生过多的铁素体和氮化物,从而降低焊接接头的腐蚀抗力和韧性。另一方面,焊接过程采用的线能量过高,工件的冷却速度过慢,焊缝及热影响区可能析出金属间相,也会使焊接接头的腐蚀抗力和韧性降低。可见,合适的焊接工艺参数和一定的技术措施相结合才能保证焊缝及热影响区的组织和性能。
表5-2 焊接工艺评定主要焊接条件
评定 | 焊接 方法 | 焊材牌号 | 坡口形式 | 保护气体 | 焊接 位置 | 焊接线 能量E/(kJ·cm-1) | 层间温度/℃ |
纵缝工艺 | SAW | Sandvik 221813L/15W | X | 平焊 (1G) | 7~21 | < 150 | |
环缝工艺 | TIG+SMAW | AVESTA2205 AVESTA22052-PW | 单面V | 焊枪Ar+1.5%N2 | 45°固定焊(6G) | 8~18 | < 150 |
焊缝背面Ar+5%N2 |
从表5-3 工艺评定试验结果可以看出,焊接接头的抗拉强度远高于母材标准的下限要求( ≥620MPa),接头拉伸性能不存在问题。接头弯曲180°后受拉面完好,表明接头的延塑性良好。焊接及热影响区在- 40℃低温下的夏比冲击功,不但满足一般≥27J 的要求,且满足ASTMA923 标准≥34J 的要求。按ASTM G48 标准在6�Cl3溶液进行的点蚀试验表明,焊接接头具有良好的耐氯离子局部腐蚀性能。焊缝和热影响区均为铁素体和奥氏体双相组织,近缝区没有出现单相铁素体,也没有发现金属间析出相的产生。焊接热影响区近缝区的铁素体含量最高为65% ,满足技术条件要求,可以保证塑韧性和耐蚀性。焊缝和热影响区其他部位中的铁素体含量为35 %~50%,奥氏体相相对较多,对塑韧性和耐蚀性有利。由此可以看出,拟定的焊接工艺评定工艺规程正确,焊接工艺参数适当,评定结果满足相关标准要求,焊接接头性能优良。
表5-3工艺评定主要性能试验结果
评定 | 抗拉强度Rm/MPa | 导向弯曲 (弯轴直径6T | 铁素体含量P% | 点蚀试验(ASTMA923C法) | |||
焊缝 | 热影响区 | 试验温 度/℃ | 试验时间Ph | 失量/(mg.m-2h) | |||
纵缝工艺 | 760 775 | 面弯180°,完好 背弯180°,完好 | 35~43 | 40~50 | 22 | 24 | 2.3 |
环缝工艺 | 765 ;750 760 ;775 | 侧弯180°,完好 | 30~45 | 40~65 | 22 | 24 | 6.3 |
6结 论
2205双相不锈钢具有良好的力学性能和耐腐蚀性能,应用前景广阔。该材料的焊接有许多特点,掌握材料的焊接性能特点,采用适当的焊接工艺,保证了焊接工艺评定试件的性能。在生产过程中,根据工艺评定结果,通过制定详细的工艺规程和工艺纪律,并在焊接施工过程中严格执行,才能保证工程的焊接质量
(l)奥氏体化元素Ni和N在得到合理两相比的方面,具有明显的作用。
(2)合金元素、焊接热循环和焊接工艺参数等都会对奥氏体和铁素体两相区产生影响,通过合理控制,可以获得最佳的两相组织。有害析出相通常是形成腐蚀失效的地方,需严格控制其析出形成。氢脆决定于焊接热输人的峰值温度和周围环境,通过合理控制可减小其发生的可能性。
(3)Dss焊接接头的腐蚀性能是其应用的关键,与腐蚀电位、两相比和冷却速度等因素有关,通过合金元素和工艺参数控制,可以获得较好的耐腐蚀性能。
总结出焊接此类钢应注意以下几点:
(1)合理选择焊接材料,保证熔敷金属的化学成分与母材相近,焊接时控制焊接热输入,可保证焊接接头的耐蚀性能不会明显降低。
(2)采用较小的焊接电流、多层多道焊接,控制焊接热输入,获得的焊接接头的力学性能与母材相近。
(3)控制道间温度,焊接前不需要预热,焊后材料可以不进行热处理而保证接头的物理和化学性能。
通过本次毕业设计,我学会了把很多专业知识有机统一地结合联系起来,同时也对我今后的学习和工作起到了很大的帮助和指导作用。
致 谢
由于本人专业理论知识和能力有限,以及生产实践的缺乏,在本论文的设计和制作完成中查阅了大量的标准和参考文献资料。同时也得到了有关老师和一些同学的大力帮助。
首先感谢我的导师吴金杰老师,本课题在选题及研究过程中得到吴金杰老师的悉心指导。吴金杰老师多次询问研究进程,并为我指点迷津,帮助我开拓研究思路,精心点拨、热忱鼓励。吴金杰老师一丝不苟的作风,严谨求实的态度,踏踏实实的精神,不仅授我以文,而且教我做人,虽历时三载,却给以终生受益无穷之道。对吴金杰老师的感激之情是无法用言语表达的,在这里我向吴老师表示真诚的感谢。
感谢母校——河南机电高等专科学校的辛勤培育之恩!感谢材料工程系给我提供的良好学习及实践环境,使我学到了许多新的知识,掌握了一定的操作技能。
感谢苏州米加尼克焊接技术有限公司,在我毕业实习期间,给我提供了大量的技术资料及实践机会,使我把学校中的理论知识在现实生产中得以应用。
最后,我非常庆幸在三年的的学习、生活中认识了很多可敬的老师和可亲的同学,并感激师友的教诲和帮助!
参考文献
[1] 吴玖,姜世振,韩俊媛,等. 双相不锈钢[M] . 北京:冶金工业出版社,1999
[2] 中国机械工程学会焊接学会编. 材料的焊接,焊接手册[M] .北京:机械工业出版社.1992
[3] 张文钺,侯胜昌. 双相不锈钢的焊接性及其焊接材料.2001.9
[4] 史耀武主编 .焊接技术手册. 福建科学技术出版社.2004.9
[4] 方伟秉. 铁素体2奥氏体型双相不锈钢的焊接性[J ] .化工装备技术.2004
[5] 杨秀倬双相不锈钢论文集[M] . 北京:冶金工业出版社.2001
[6] 昊玖等双相不锈钢论文集[M] .北京:冶金工业出版社.1996
[7] 陆世英等不锈钢[M] . 北京:原子能出版社.2002