几种求值域的方法 配方法求值域

几种求值域的方法

函数的值域问题及解法

函数y=f(x)的值域是函数值的取值范围,用集合表示为{y│y=f(x),x∈A}.

这里集合A是函数的定义域.由此可见,它与定义域密切相关.

值域的几何意义是函数图象上点的纵坐标的集合,也可以说成是函数图象纵向的分布范围.

一般来说,求值域比求定义域困难得多。求值域要根据解析式的结构特征选择适当的方法,具有较强的灵活性和一定的技巧性。

1.观察法

通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。用于简单的解析式。

y=1-√x≤1,值域(-∞,1]本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。

2.配方法

当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域。

  例3:求函数y=x^2-4x+3的值域。 点拨:配方成完全平方式,利用二次函数的最值求。

  点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。

3. 换元法

以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域。

  例2求函数y=x-3+√2x+1 的值域。

  点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值,确定原函数的值域。

  解:设t=√2x+1 (t≥0),则

  x=1/2(t^2-1)。

  于是y=1/2×(t^2-1)-3+t=1/2×(t+1)^2-4≥1/2-4=-7/2.

  所以,原函数的值域为{y|y≥-7/2}。

  点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域。这种解题的方法体现换元、化归的思想方法。它的应用十分广泛。

4.不等式法

用不等式的基本性质,也是求值域的常用方法。

y=(e^x+1)/(e^x-1), (0<x<1).

∵0<x<1,

∴1<e^x<e,0<e^x-1<e-1,

1/(e^x-1)>1/(e-1),

y=1+2/(e^x-1)>1+2/(e-1).值域(1+2/(e-1),+∞).

5.最值法

如果函数f(x)存在最大值M和最小值m.那么值域为[m,M].

因此,求值域的方法与求最值的方法是相通的.

6. 反函数法

函数和它的反函数的定义域与值域互换.

当函数的反函数存在时,则其反函数的定义域就是原函数的值域。

  例2求函数y=(x+1)/(x+2)的值域。

 点拨:先求出原函数的反函数,再求出其定义域。

  解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y�y≠1,y∈R}。

  点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。

7.单调性法

若f(x)在定义域[a, b]上是增函数,则值域为[f(a), f(b)].减函数则值域为[f(b), f(a)].

y=x^2-4x+3,(-1≤x≤1).

几种求值域的方法 配方法求值域

y=(x-2)^2-1在[-1, 1]上是减函数,

F(-1)=8,f(1)=0, 值域[0,8].点评:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域。

8.分离常数

点拨:将原分式函数,利用长除法转化为一个整式与一个分式之和。y=(1+x)/(1-x)=2/(1-x)-1

≠-1,值域(-∞,-1)∪(-1,+∞).

9.判别式法

  若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。

  例4求函数y=(2x^2-2x+3)/(x^2-x+1)的值域。

 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。

  解:将上式化为(y-2)x^2-(y-2)x+(y-3)=0 (*)

  当y≠2时,由Δ=(y-2)^2-4(y-2)(y-3)≥0,解得:2<y≤10/3  当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。

  点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域。常适应于形如y=(ax^2+bx+c)/(dx^2+ex+f)及y=ax+b±√(cx^2+dx+e)的函数

10.图象法

 通过观察函数的图象,运用数形结合的方法得到函数的值域。

 例6求函数y=�x+1�+√(x-2)2 的值域。

  点拨:根据绝对值的意义,去掉符号后转化为分段函数,作出其图象。

  解:原函数化为

{-2x+1(x≤-1)

  y={3(-1<x≤2)

  {2x-1(x>2)

  它的图象如图所示。

 显然函数值y≥3,所以,函数值域[3,+∞]。

  点评:分段函数应注意函数的端点。利用函数的图象

  求函数的值域,体现数形结合的思想。是解决问题的重要方法。

点评:对于形如y=(ax+b)/(cx+d)的形式的函数均可利用这种方法。路漫漫其修远兮吾将上下而求索求值域方法学法指导求值域方法

  

爱华网本文地址 » http://www.aihuau.com/a/25101014/220900.html

更多阅读

Windows Search卸载删除四种最全的方法 windows search卸载包

Windows Search卸载删除四种最全的方法——简介为什么Windows Search 卸载不了?Windows Search如何卸载删除?近期有很多网友发现自己电脑的搜索不再如以前以一样直接搜索了,都变成了Windows Search。同时不少网友们都反映“Windows Se

扎头发的方法有几种 精 简单的扎头发方法

今天在网上看到了几种扎头发的方法,真的是简单易学,而且都很漂亮精致,下面小编就为大家一一介绍吧。扎头发的方法有几种 精——第一款扎头发的方法有几种 精 1、先把头顶的头发分成三份扎头发的方法有几种 精 2、把2放在3的下面扎头发

几种花草常见的害虫及防治小妙招 常见害虫

很多人喜欢在室内养些花草,既绿化环境又陶冶情趣。但是花草不仅养起来有些娇气,还很容易受到一些小虫的“青睐”,使人烦恼,又很无奈。给大家介绍几种花草常见的害虫及防治方法。菊花易招蚜虫蚜虫,多是绿色和黑色,

教你几种袜子娃娃的做法 用袜子做娃娃教程

几种袜子娃娃的做法,姐妹们可以来学习一下了。袜子娃娃在一针一线中诞生,缝缝补补中成长,袜子娃娃顾名思义就是用袜子做的娃娃.之所以用袜子,一方面是因为袜子的图案比较立体,另一方面是袜子的弹性比较大,塞进丝绵之后弹性会比一般的布

声明:《几种求值域的方法 配方法求值域》为网友风软一江水分享!如侵犯到您的合法权益请联系我们删除