遗传算法的优缺点 bp神经网络优缺点

遗传算法属于进化算法(Evolutionary Algorithms) 的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解.遗传算法有三个基本算子:选择、交叉和变异.

。数值方法求解这一问题的主要手段是迭代运算。一般的迭代方法容易陷入局部极小的陷阱而出现"死循环"现象,使迭代无法进行。遗传算法很好地克服了这个缺点,是一种全局优化算法。
生物在漫长的进化过程中,从低等生物一直发展到高等生物,可以说是一个绝妙的优化过程。这是自然环境选择的结果。人们研究生物进化现象,总结出进化过程包括复制、杂交、变异、竞争和选择。一些学者从生物遗传、进化的过程得到启发,提出了遗传算法(GA)。算法中称遗传的生物体为个体(individual),个体对环境的适应程度用适应值(fitness)表示。适应值取决于个体的染色体(chromosome),在算法中染色体常用一串数字表示,数字串中的一位对应一个基因(gene)。一定数量的个体组成一个群体(population)。对所有个体进行选择、交叉和变异等操作,生成新的群体,称为新一代(newgeneration)。
遗传算法计算程序的流程可以表示如下[3]:
第一步 准备工作
(1)选择合适的编码方案,将变量(特征)转换为染色体(数字串,串长为m)。通常用二进制编码。
(2)选择合适的参数,包括群体大小(个体数M)、交叉概率PC和变异概率Pm。
(3)确定适应值函数f(x)。f(x)应为正值。
第二步 形成一个初始群体(含M个个体)。在边坡滑裂面搜索问题中,取已分析的可能滑裂面组作为初始群体。
第三步 对每一染色体(串)计算其适应值fi,同时计算群体的总适应值 。
第四步 选择
计算每一串的选择概率Pi=fi/F及累计概率。选择一般通过模拟旋转滚花轮(roulette,其上按Pi大小分成大小不等的扇形区)的算法进行。旋转M次即可选出M个串来。在计算机上实现的步骤是:产生[0,1]间随机数r,若r<q1,则第一串v1入选,否则选v2,使满足qi-1<r<qi(2≤i≤m)。可见适应值大的入选概率大。
第五步 交叉
(1)对每串产生[0,1]间随机数,若r>pc,则该串参加交叉操作,如此选出参加交叉的一组后,随机配对。
(2) 对每一对,产生[1,m]间的随机数以确定交叉的位置。
第六步 变异
如变异概率为Pm,则可能变异的位数的期望值为Pm×m×M,每一位以等概率变异。具体为对每一串中的每一位产生[0,1]间的随机数r,若r<Pm,则该位发生反转,如对染色体二进制编码为数字0变为1,1变为0。
如新个体数达到M个,则已形成一个新群体,转向第三步;否则转向第四步继续遗传操作。直到找到使适应值最大的个体或达到最大进化代数为止。
由于选择概率是由适应值决定的,即适应值大的染色体入选概率也较大,使选择起到"择优汰劣"的作用。交叉使染色体交换信息,结合选择规则,使优秀信息得以保存,不良信息被遗弃。变异是基因中得某一位发生突变,以达到产生确实有实质性差异的新品种。遗传算法虽是一种随机算法,但它是有导向的,它所使用的"按概率随机选择"方法是在有方向的搜索方法中的一种工具。正是这种独特的搜索方法,使遗传算法自然地避开了其它最优化算法常遇到的局部最小陷阱。

遗传算法与传统的优化方法(枚举,启发式等)相比较,以生物进化为原型,具有很好的收敛性,在计算精度要求时,计算时间少,鲁棒性高等都是它的优点。

遗传算法的优点:
1. 与问题领域无关切快速随机的搜索能力。
2. 搜索从群体出发,具有潜在的并行性,可以进行多个个体的同时比较,robust.
遗传算法的优缺点 bp神经网络优缺点
3. 搜索使用评价函数启发,过程简单
4. 使用概率机制进行迭代,具有随机性。
5. 具有可扩展性,容易与其他算法结合。

遗传算法的缺点:

1、遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,

2、另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.
3、没有能够及时利用网络的反馈信息,故算法的搜索速度比较慢,要得要较精确的解需要较多的训练时间。
4、算法对初始种群的选择有一定的依赖性,能够结合一些启发算法进行改进。
5、算法的并行机制的潜在能力没有得到充分的利用,这也是当前遗传算法的一个研究热点方向。

在现在的工作中,遗传算法(1972年提出)已经不能很好的解决大规模计算量问题,它很容易陷入“早熟”。常用混合遗传算法,合作型协同进化算法等来替代,这些算法都是GA的衍生算法。


遗传算法具有良好的全局搜索能力,可以快速地将解空间中的全体解搜索出,而不会陷入局部最优解的快速下降陷阱;并且利用它的内在并行性,可以方便地进行分布式计算,加快求解速度。但是遗传算法的局部搜索能力较差,导致单纯的遗传算法比较费时,在进化后期搜索效率较低。在实际应用中,遗传算法容易产生早熟收敛的问题。采用何种选择方法既要使优良个体得以保留,又要维持群体的多样性,一直是遗传算法中较难解决的问题。


模拟退火算法虽具有摆脱局部最优解的能力,能够以随 机搜索技术从概率的意义上找出目标函数的全局最小点。但是,由于模拟退火算法对整个搜索空间的状况了解不多,不便于使搜索过程进入最有希望的搜索区域,使得模拟退火算法的运算效率不高。模拟退火算法对参数(如初始温度)的依赖性较强,且进化速度慢。

  

爱华网本文地址 » http://www.aihuau.com/a/25101014/235615.html

更多阅读

神经网络的特点与功能 卷积神经网络 特点

一、神经网络的特点1.信息处理的并行性、信息存储的分布性、信息处理单元的互联性、结构的可塑性人工神经网络是由大量简单处理元件相互连接构成的高度并行的非线性系统,具有大规模并行性处理特性。虽然每个处理但与的功能十分简单

遗传算法GAOT工具箱1 遗传算法工具箱

前一阵子搞了一些遗传算法的东西,使用的是gaot遗传算法工具箱,这个算法工具箱还是蛮使用的,不过貌似很久不更新了,将就用吧!貌似网上下载的工具箱代码有错误,不妨检查一下,f2b函数需要如下修改function [bval] = function(fval,bounds,bi

神经网络工具箱nntool的使用方法 bp神经网络工具箱下载

这是根据我个人经验整理出来的关于如何使用nntool神经网络工具箱进行“数据训练”的方法:1. 在命令窗口键入nntool命令打开神经网络工具箱;2.点击Import按钮两次,分别把输入向量和目标输出加入到对应的窗口([Inputs]和[Targets])中,有两种

神经猫的贪心算法 贪心算法的优缺点

一、概念 贪心算法(贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题他

声明:《遗传算法的优缺点 bp神经网络优缺点》为网友吴皇万岁分享!如侵犯到您的合法权益请联系我们删除