转载 关于转动惯量转动惯量公式 转动惯量公式

原文地址:关于转动惯量转动惯量公式作者:筑龙路桥家园

转动惯量(Moment of Inertia)

内容:一。概念性介绍(或称质量惯矩?注意与截面惯性矩区别)

(转动惯量定理:扭矩 M=Jβ,J是转动惯量,β是角加速度)

二.各种截面形式的公式详表

三.网友推导的矩形截面转动惯量公式

一.概念性介绍转动惯量(Moment of Inertia)

本段摘自百度百科http://baike.baidu.com/view/110433.htm

刚体绕轴转动惯性的度量。又称惯性距、惯性矩(俗称惯性力距、惯性力矩)

  其数值为J=∑ mi*ri^2,式中mi表示刚体的某个质点的质量,ri表示该质点到转轴的垂直距离。

  求和号(或积分号)遍及整个刚体。转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。规则形状的均质刚体,其转动惯量可直接计得。不规则刚体或非均质刚体的转动惯量,一般用实验法测定。转动惯量应用于刚体各种运动的动力学计算中。

  描述刚体绕互相平行诸转轴的转动惯量之间的关系,有如下的平行轴定理[1]:刚体对一轴的转动惯量,等于该刚体对同此轴平行并通过质心之轴的转动惯量加上该刚体的质量同两轴间距离平方的乘积。由于和式的第二项恒大于零,因此刚体绕过质量中心之轴的转动惯量是绕该束平行轴诸转动惯 量中的最小者。

  还有垂直轴定理:垂直轴定理
  一个平面刚体薄板对于垂直它的平面轴的转动惯量,等于绕平面内与垂直轴相交的任意两正交轴的转动惯量之和。

  表达式:Iz=Ix+Iy

  刚体对一轴的转动惯量,可折算成质量等于刚体质量的单个质点对该轴所形成的转动惯量。由此折算所得的质点到转轴的距离,称为刚体绕该轴的回转半径κ,(tina:回转半径=根号下I除以m),式中M为刚体质量;I为转动惯量。

  转动惯量的量纲为L^2M,在SI单位制中,它的单位是kg·m^2。

  刚体绕某一点转动的惯性由更普遍的惯量张量描述。惯量张量是二阶对称张量,它完整地刻画出刚体绕通过该点任一轴的转动惯量的大小。

  补充对转动惯量的详细解释及其物理意义:

  先说转动惯量的由来,先从动能说起大家都知道动能E=(1/2)mv^2,而且动能的实际物理意义是:物体相对某个系统(选定一个参考系)运动的实际能量,(P势能实际意义则是物体相对某个系统运动的可能转化为运动的实际能量的大小)。

  E=(1/2)mv^2 (v^2为v的2次方)

  把v=wr代入上式(w是角速度,r是半径,在这里对任何物体来说是把物体微分化分为无数个质点,质点与运动整体的重心的距离为r,而再把不同质点积分化得到实际等效的r)

  得到E=(1/2)m(wr)^2

  由于某一个对象物体在运动当中的本身属性m和r都是不变的,所以把关于m、r的变量用一个变量K代替,

  K=mr^2

  得到E=(1/2)Kw^2

  K就是转动惯量,分析实际情况中的作用相当于牛顿运动平动分析中的质量的作用,都是一般不轻易变的量。

  这样分析一个转动问题就可以用能量的角度分析了,而不必拘泥于只从纯运动角度分析转动问题。

  为什么变换一下公式就可以从能量角度分析转动问题呢?

  1、E=(1/2)Kw^2本身代表研究对象的运动能量

  2、之所以用E=(1/2)mv^2不好分析转动物体的问题,是因为其中不包含转动物体的任何转动信息。

  3、E=(1/2)mv^2除了不包含转动信息,而且还不包含体现局部运动的信息,因为里面的速度v只代表那个物体的质

  心运动情况。

  4、E=(1/2)Kw^2之所以利于分析,是因为包含了一个物体的所有转动信息,因为转动惯量K=mr^2本身就是一种积

  分得到的数,更细一些讲就是综合了转动物体的转动不变的信息的等效结果K=∑ mr^2 (这里的K和上楼的J一样)

  所以,就是因为发现了转动惯量,从能量的角度分析转动问题,就有了价值。

  若刚体的质量是连续分布的,则转动惯量的计算公式可写成K=∑ mr^2=∫r^2dm=∫r^2σdV

  其中dV表示dm的体积元,σ表示该处的密度,r表示该体积元到转轴的距离。

  补充转动惯量的计算公式(下有公式详表)

  转动惯量和质量一样,是回转物体保持其匀速圆周运动或静止的特性,用字母J表示。

  对于杆:

  当回转轴过杆的中点并垂直于轴时;J=mL^2/12

  其中m是杆的质量,L是杆的长度。

  当回转轴过杆的端点并垂直于轴时:J=mL^2/3

  其中m是杆的质量,L是杆的长度。

  对与圆柱体:

  当回转轴是圆柱体轴线时;J=mr^2/2

  其中m是圆柱体的质量,r是圆柱体的半径。

  转动惯量定理:扭矩M=Jβ

  J是转动惯量

β是角加速度

天涯问答中的解释:转动惯量等于刚体中每个质点的质量与这一质点到转轴垂直距离平方的乘积之和,即I=Σmir1。是转动刚体转动惯性的量度。由转动定理Izα=Mz可知,受到相同外力矩作用的两个刚体,转动惯量大的会获得较小的角加速度,说明这个刚体较之另一刚体运动状态较难改变,转动惯性比较大。它可以反映出物体平动状态下的惯性:质量越大,则惯性越大,即越难改变它的平动状态(同样从静止开始,质量大的物体比质量小的物体更难于被加速)。
同样,转动惯量反映出物体转动状态下的惯性:转动惯量大的物体的角速度更难于被改变。
当然,转动惯量与质量也有很大不同:转动惯量不仅与质量分布有关,也与转轴的位置有关,也就是说,转动惯量的要求更多一些。

二.各种截面形式的公式详表







三.公式推导

矩形截面:

令现在有一个质量分布均匀的矩形刚体,其长宽分别为a,b质量为m,其质心在这个矩形的几何中心
先假定一个轴过质心,矩形绕过质心的轴转动
以质心为坐标原点建立坐标系x-y,x轴平行与长。
根据转动惯量计算公式
J=积分(p^2*dm)..............(1)
其中积分的上下届分别为,x从-a/2到a/2,y从-b/2到b/2 p为某点到质心的距离
p=二次根号(x^2+y^2).......(2)
dm=m/(a*b)*dxdy......(3)
把(2),(3)带入(1)并求出积分可以得到,刚体绕过质心的轴的转动惯量为
J=(1/12)*m*(a^2+b^2)

如果求的是绕一个角点转动的转动惯量
[转载]关于转动惯量转动惯量公式 转动惯量公式
由平行轴定理可以得到,令刚体绕一个角点的转动惯量为J0
那么,J0=J+m*d^2...........(5)
其中J为绕过质心的轴旋转的转动惯量,d为绕角点的轴与绕质心的轴这两个轴的距离d=0.5*二次根号(a^2+b^2)
解答(5)可以得到
J0=(1/3)*m*(a^2+b^2)

圆柱截面:

可以看作是一个圆盘的转动惯量。用D=m/A表示面密度,对圆柱来说D=m/(pi*r^2),dA=2pi*rdr

在距离盘心r处取一宽为dr的圆环,它的质量dm=m/(pi*r^2)* 2pi*rdr 然后代入 J=∫r^2dm 从0到r积分,得到J=1/2mr^2(——tina:怎么看算出来都少了1/2的系数,不明白!)

(XHF)更多路桥知识请参阅:http://lq.zhulong.com/luqiao.asp

  

爱华网本文地址 » http://www.aihuau.com/a/25101015/238079.html

更多阅读

转载 关于李煜的绝命词《虞美人》 虞美人 李煜 朗诵

很是欣赏他的文学才华原文地址:关于李煜的绝命词《虞美人》作者:攻玉李煜是怎么死的?写完虞美人后赐酒毒死的李煜是几岁死的,怎么死的:42岁作虞美人的词后被宋皇帝毒死的~李煜 (937-978)初名从嘉,字重光,号钟隐,又号莲峰居士。南唐中主第六

转载 关于fashionwalker和转送JAPANjshoppers旗下转运 fashionwalker

原文地址:关于fashionwalker和转送JAPAN(jshoppers旗下转运网站)的购物经验作者:粟米碳作者:Sumi最近日元汇率持续走低,相信不少人对日淘的兴趣都有所增加吧~po主也是,于是po主根据网上的各种教程和自己淘宝狗的经验进行了一些日淘活动,咳

转载 关于索尼A7系列你需要知道的补全 索尼a7Ⅱ

原文地址:关于索尼A7系列你需要知道的(补全)作者:滕飞ET在之前的《给A7买个单反当备机》、《索尼E卡口镜头如何选?》、《在海洋馆里拍摄》等文章中,ET分享了与A7有关的一些知识和使用感受。各位朋友给予了很高的关注,同时也提出了许多问题

转载 关于名门媳妇 重生之名门媳妇

最爱路宏!原文地址:关于名门媳妇作者:路宏  新的一年到了,在这里祝大家元旦快乐。说起来还真是好久没和大家见面了,很想大家。但由于一直忙于新剧《天才碰麻瓜》的拍摄,所以迟迟未能更博。不过我还是要克服困难,在跨年之际献上这一篇沉淀

转载 关于商战明有感,总体写的不错,但我和小姐的关 写的不错

原文地址:关于商战明有感,总体写的不错,但我和小姐的关系显然是猜想作者:商战明关于商战明有感商战自从接触商战明师兄以来,遇到过这样那样的不理解,一个一个的问题慢慢沉淀下来,经过两个月的思考,很多东西慢慢有了轮廓。为什么他有两个圈

声明:《转载 关于转动惯量转动惯量公式 转动惯量公式》为网友吾本輕狂分享!如侵犯到您的合法权益请联系我们删除