PiecewiseLinearRegressionModel general linear model

在这里使用不同的方法来对分段线性模型作一说明。前两个模型的区别是运用不同的参数化。第四个模型时使用非线性模型的分段方法。第三种方法是利用二次项来模拟分段函数。当然,不同的方法应该导向同样的结果。

I use different ways to fit a two-part piecewiselinear regression model. Not surprisingly, these models areidentical (for model 1, 2, and 4) or approximately the same (3).Here I assume 2-part piecewise linear models with onecutoff.

Nonlinear relationships between the response andthe explanatory viariables can be sometimes successfully modelledusing a linear model that has different slopes for certain rangesof the covariable, that is, the response is piecewise linear. Forexample, in the plot, the relatinships between children age andtheir weights are not linear

but increasing slowly before a cutoff(say 14here) and more fast afterwards.

This approach can be generalized to more than onechange point with the followingformular:

Y = b00 + b01 * x + bi * (x -ci) * (x > ci),whereci’sarethebreakpoints


Model 1:Piecewise linear model (1): Y = b0 +b1*x + b2(x-x0)*(x≥x0)

Model 1

Variable

DF

Parameter
Estimate

Standard
Error

tValue

Pr>|t|

Intercept

1

-1.38490

48.77311

-0.03

0.9777

age11

1

7.30139

3.83035

1.91

0.0748

age12

1

13.26017

9.81718

1.35

0.1956

For age12: beta =20.56 se = 7.271 afterre-calculation

Model2: Piecewise linear model (2): Y = b0 +b1*(x-x0)*(x<x0)+b2*(x-x0)*(x≥x0)

Model 2

Variable

DF

Parameter
Estimate

Standard
Error

tValue

Pr>|t|

Intercept

1

100.83458

6.44089

15.66

<.0001

age21

1

7.30139

3.83035

1.91

0.0748

age22

1

20.56156

7.27105

2.83

0.0121

Model 3: using linear + quadratic: Y = b0 + b1*x+ b2*x*x

Model 3

Variable

DF

Parameter
Estimate

Standard
Error

tValue

Pr>|t|

Intercept

1

249.74392

329.02657

0.76

0.4589

age31

1

-34.18620

49.65665

-0.69

0.5010

age32

1

1.70269

1.85630

0.92

0.3726

Model 4: from PROC NLIN: Y =(x<x0) *(b01 + b11*x) + (x≥x0) *(b02 + b12*x) whereb02 = b01 + (b11-b12)*x0

Parameter

Estimate

Approx
StdError

Approximate 95% ConfidenceLimits

beta01

-1.3849

48.7731

-104.8

102.0

beta11

7.3014

3.8303

-0.8186

15.4214

beta12

20.5616

7.2711

5.1476

35.9755



SAScode:

*

Createdata

;

data demo;

set sashelp.class;

*Model 1;

w1= weight;

age11 = age;

age12 = (age-14) * (age>=14);

*Model 2;

w2= weight;

age21 = (age -14) *(age<14);

age22 = (age -14) *(age>=14);

*Model 3;

w3= weight;

age31 = age;

age32 = age*age;

run;

*

Fittingmodels

;

*Model1;

proc reg data=democovout outseb outest=ot1;

model w1 =age11 age12/covb;

output out=b1predicted=w1p;

*Model2;

proc reg covout outseb outest=ot11;

model w2 =age21 age22/covb;

output out=b2predicted=w2p;

*Model3;

proc reg covout outseb outest=ot3;

model w3 =age31 age32;

output out=b3predicted=w3p;

run;

quit;

*

Model4

;

proc nlin data =demo;

parms beta01=-.5 beta11=1beta12 =1;

x0=14;

beta02 = beta01 + (beta11 - beta12) *x0;

model weight = (age < x0 ) * (beta01 + beta11 * age)+

(age >=x0) * (beta02 + beta12 * age);

*force E[Y|x] equals at x0;

output out = b4 predicted = w4p;

run;

*

Model 1 ==Modle 2

;

dataot11;

set ot1 end=Eof;

array demo[3,2]_temporary_;

if _type_ ='COV'then do;

if upcase(_name_) ='AGE11'then do;

demo[1,1] = age11; demo[1,2]=age12;

end;

if upcase(_name_) ='AGE12'then do;

demo[2,1] = age11; demo[2,2]=age12;

end;

end;

if _type_ ='PARMS'then do;

demo[3,1] = age11; demo[3,2]=age12;

end;

if Eof then do;

beta2 = demo[3,1]+demo[3,2];

se2 =sqrt(demo[1,1]+demo[2,2]+2*demo[1,2]);

put 'beta = ' beta2 best5.2 @15'se= ' se2 best5.2;

end;

run;

datawp;

merge b1 b2 b3 b4;

run;

proc sort data =wp; by age;

run;

*

plot4models;

;

proc sgplot data=wp;

scatter x=agey=weight/markerAttrs=(symbol=star size =5);

series x=agey=w1p/markersmarkerAttrs=(symbol=CircleFilled size =5)lineAttrs=(color=red) name ='1'legendLabel ='Predictedvalue of Model 1';

series x=agey=w2p/markersmarkerAttrs=(symbol=Circle size =10)lineAttrs=(color=purple)name='2'legendLabel ='Predictedvalue of Model 2';

series x=agey=w3p/lineAttrs=(color=blue)name='3'legendLabel ='Predictedvalue of Model 3';

series x=agey=w4p/markersmarkerAttrs=(symbol=circle size =15)lineAttrs=(color=purple)name='4'legendLabel ='Predictedvalue of Model 4';

keyLegend '1' '2' '3' '4'/location =inside across =1;

refline 14/axis=xlabel ='Cutoff';

run;

  

爱华网本文地址 » http://www.aihuau.com/a/25101015/238950.html

更多阅读

韩国版NextTopmodel 挑战!超级模特KOREA! korea model videos

前段时间比较关注韩国版的明日超模——《挑战!超级模特KOREA!》,只是看了宣传片真的吓一跳啊,妈妈咪啊,韩国人办事真够认真啊,韩版主持人张允珠比李艾更霸气,眼睛更有神韵!而且人家的宣传片,从头到尾都是算是原创,绝对不像中国版明日超模《美

第九课时:概念数据模型Conceptual Data Model,CDM data ng model

  第九课时:概念数据模型(Conceptual Data Model,CDM)2013-11-12 10:52:27标签:CDM概念数据模型Conceptual Data Model添加标签>>原创作品,允许转载,转载时请务必以超链接形式标明文章原始出处、作者信息和本声明。否则将追究法律责任。h

声明:《PiecewiseLinearRegressionModel general linear model》为网友哥的世界分享!如侵犯到您的合法权益请联系我们删除