一、教学目标
1.理解二次函数的概念;
2.会求一些简单的实际问题中二次函数的解析式和它的定义域;
3.在从问题出发到列二次函数解析式的过程中,体验用函数思想去描述、研究变量之间变化规律的意义.
二、教学重点及难点
教学重点:对二次函数概念的理解.
教学难点:由实际问题确定函数解析式和确定自变量的取值范围.
三、教学设计要点
1.情境设计:通过思考回顾引入新课题;
2.教学内容的处理:知识点与具体题目结合,使学生灵活运用知识;
3.教学方法:启发式教学;
四、教学用具
粉笔、多媒体PPT
五、教学过程
(一) 复习提问
我们学过了哪些函数?
什么叫一次函数?(y=kx+b,其中k≠0)表达式中的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件?k值对函数性质有什么影响?
说明:复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k≠0的条件,以备与二次函数中的a进行比较.
(二)由实际问题引入新课
函数是研究两个变量在某变化过程中的相互依赖关系,我们已学过正比例函数,反比例函数和一次函数.看下面两个例子中两个变量之间存在怎样的关系.
例题1正方形的边长是x(cm),面积y(cm2)与边长x之间的函数关系如何表示?
解:函数关系式是y=x2(x>0).
例题2农机厂第一个月水泵的产量为50(台)第三个月的产量y(台)与月平均增长率x之间的函数关系如何表示?
解:函数关系式是y=50(1+x)2,即y=50x2+100x+50.
说明:由以上两例,引导启发学生归纳出
(1)函数解析式的一边均为整式(表明这种函数与一次函数有共同的特征).
(2)自变量的最高次数是2(这与一次函数不同).
本处设计了两个问题,学生容易分析其中的变量以及变量之间的关系,也不难列出函数解析式.通过归纳解析式特点,自然引出二次函数的定义.
(三)学习新课
1、二次函数的定义:形如y=ax2+bx+c(a≠0,a、b、c为常数)的函数叫做二次函数.
对二次函数概念的理解可从以下几方面入手:
(1)强调“形如”,即由形来定义函数名称.二次函数即y是关于x的二次多项式.对定义中的“形如”的理解,与一次函数类似地,仍然要注意二次函数的自变量与函数不仅仅局限于只用x、y来表示.
(2)在y=ax2+bx+c中自变量是x,它的取值范围是一切实数.但在实际问题中,自变量的取值范围应是使实际问题有意义的值.如例1中,x>0.
(3)为什么二次函数定义中要求a≠0?(若a=0,ax2+bx+c就不是关于x的二次多项式了)
(4)b和c是否可以为零?由例1可知,b和c均可为零.
若b=0,则y=ax2+c;
若c=0,则y=ax2+bx;
若b=c=0,则y=ax2.
以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式.
2、概念巩固
(1)下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.
1)3y=x(x-1);2)y=3x(2-x)+3x2;3)y=x4+2x2+1;4)y=2x2+3x+1
(2)已知函数y=(m2-9)x2-(m-3)x+2,当m为何值时,这个函数是二次函数?当m为何值时,这个函数是一次函数?
(3)圆柱的体积V的计算公式是V= ,其中 r是圆柱底面的半径,h是圆柱的高.
1当h 是常量时,V是r 的什么函数?
2当r 是常量时,V是h 的什么函数?
[说明]通过练习,巩固加深对二次函数概念的理解.
3、例题分析
例题3设圆柱的高h(cm)是常量,写出圆柱的体积V(cm3)与底面周长c(cm)之间的函数关系式.
例题4用长为20米的篱笆,一面靠墙(墙长超过20米),围成一个长方形花圃,如图所示.设AB的长为x米,花圃的面积为y平方米,求y关于x的函数解析式及函数定义域.
例题5 三角形的两条边长的和为9 cm,它们的夹角为,设其中一条边长为x(cm),三角形的面积为y(cm2),试写出y与x之间的函数解析式及定义域.
对二次函数定义域的认识,要明确函数的表达式包括解析式和定义域.在具体问题中,有时只研究函数的解析式.若需要研究函数的定义域时,一般有下列两种可能性:如果未加说明,函数的定义域由解析式确定;如果函数有实际背景,那么写出函数解析式的同时必须给出定义域,这时既要考虑解析式的意义,又要考虑问题的实际意义.
(四)巩固练习:练习26.1
(五)课堂小结:这节课你学习了什么,有何收获?
(六)作业布置:习题26.1