卷积的物理意义。 信号卷积的物理意义

http://www.douban.com/group/topic/15957958/

例子:
有一个七品县令,喜欢用打板子来惩戒那些市井无赖,而且有个惯例:如果没犯大罪,只打一板,释放回家,以示爱民如子。
有一个无赖,想出人头地却没啥指望,心想:既然扬不了善名,出恶名也成啊。怎么出恶名?炒作呗!怎么炒作?找名人呀!他自然想到了他的行政长官——县令。
无赖于是光天化日之下,站在县衙门前撒了一泡尿,后果是可想而知地,自然被请进大堂挨了一板子,然后昂首挺胸回家,躺了一天,嘿!身上啥事也没有!第二天如法炮制,全然不顾行政长管的仁慈和衙门的体面,第三天、第四天……每天去县衙门领一个板子回来,还喜气洋洋地,坚持一个月之久!这无赖的名气已经和衙门口的臭气一样,传遍八方了!
县令大人噤着鼻子,呆呆地盯着案子上的惊堂木,拧着眉头思考一个问题:这三十个大板子怎么不好使捏?……想当初,本老爷金榜题名时,数学可是得了满分,今天好歹要解决这个问题:
——人(系统!)挨板子(脉冲!)以后,会有什么表现(输出!)?
——费话,疼呗!
——我问的是:会有什么表现?
——看疼到啥程度。像这无赖的体格,每天挨一个板子啥事都不会有,连哼一下都不可能,你也看到他那得意洋洋的嘴脸了(输出0);如果一次连揍他十个板子,他可能会皱皱眉头,咬咬牙,硬挺着不哼
(输出1);揍到二十个板子,他会疼得脸部扭曲,象猪似地哼哼(输出3);揍到三十个板子,他可能会象驴似地嚎叫,一把鼻涕一把泪地求你饶他一命(输出5);揍到四十个板子,他会大小便失禁,勉
强哼出声来(输出1);揍到五十个板子,他连哼一下都不可能(输出0)——死啦!
县令铺开坐标纸,以打板子的个数作为X轴,以哼哼的程度(输出)为Y轴,绘制了一条曲线:
——呜呼呀!这曲线象一座高山,弄不懂弄不懂。为啥那个无赖连挨了三十天大板却不喊绕命呀?
——呵呵,你打一次的时间间隔(Δτ=24小时)太长了,所以那个无赖承受的痛苦程度一天一利索,没有叠加,始终是一个常数;如果缩短打板子的时间间隔(建议Δτ=0.5秒),那他的痛苦程度可就迅速叠加了;等到这无赖挨三十个大板(t=30)时,痛苦程度达到了他能喊叫的极限,会收到最好的惩戒效果,再多打就显示不出您的仁慈了。
——还是不太明白,时间间隔小,为什么痛苦程度会叠加呢?
卷积的物理意义。 信号卷积的物理意义
——这与人(线性时不变系统)对板子(脉冲、输入、激励)的响应有关。什么是响应?人挨一个板子后,疼痛的感觉会在一天(假设的,因人而异)内慢慢消失(衰减),而不可能突然消失。这样一来,只要打板子的时间间隔很小,每一个板子引起的疼痛都来不及完全衰减,都会对最终的痛苦程度有不同的贡献:
t个大板子造成的痛苦程度=Σ(第τ个大板子引起的痛苦*衰减系数)
[衰减系数是(t-τ)的函数,仔细品味]
数学表达为:y(t)=∫T(τ)H(t-τ)
——拿人的痛苦来说卷积的事,太残忍了。除了人以外,其他事物也符合这条规律吗?
——呵呵,县令大人毕竟仁慈。其实除人之外,很多事情也遵循此道。好好想一想,铁丝为什么弯曲一次不折,快速弯曲多次却会轻易折掉呢?
——恩,一时还弄不清,容本官慢慢想来——但有一点是明确地——来人啊,将撒尿的那个无赖抓来,狠打40大板!

拉普拉斯变换其实是一个数学上的简便算法;想要了解其”物理”意义 — 如果有的话 — 请看我举这样一个例子:
问题:请计算十万乘以一千万。
对于没学过指数的人,就只会直接相乘;对于学过指数的人,知道不过是把乘数和被乘数表达成指数形式后,两个指数相加就行了;如果要问究竟是多少,把指数转回来就是。
“拉 普拉斯变换” 就相当于上述例子中把数转换成”指数” 的过程;进行了拉普拉斯变换之后,复杂的微分方程(对应于上例中”复杂”的乘法)就变成了简单的代数方程,就象上例中”复杂”的乘法变成了简单的加减法。再把简单的代数方程的解反变换回去(就象把指数重新转换会一般的数一样),就解决了原来那个复杂的微分方程。
所以要说拉普拉斯变换真有”物理意义”的话,其物理意义就相当于人们把一般的有理数用指数形式表达一样。

另附上:图像卷积。

http://blog.csdn.net/xiaoxin_ling/article/details/3587987

如果你刚刚接触图像处理,或者离开大学很长时间,一看到卷积这个东西,肯定和我一样感到晕菜.那么就复习一下,并且实际的写个程序验证一下,我保证你这辈子不会再忘记卷积的概念了.我们来看一下一维卷积的概念.
连续空间的卷积定义是f(x)与g(x)的卷积是 f(t-x)g(x)在t从负无穷到正无穷的积分值.t-x要在f(x)定义域内,所以看上去很大的积分实际上还是在一定范围的.实际的过程就是f(x)先做一个Y轴的反转,然后再沿X轴平移t就是f(t-x),然后再把g(x)拿来,两者乘积的值再积分.想象一下如果g(x)或者f(x)是个单位的阶越函数.那么就是f(t-x)与g(x)相交部分的面积.这就是卷积了.
把积分符号换成求和就是离散空间的卷积定义了.那么在图像中卷积卷积地是什么意思呢,就是图像就是图像f(x),模板是g(x),然后将模版g(x)在模版中移动,每到一个位置,就把f(x)与g(x)的定义域相交的元素进行乘积并且求和,得出新的图像一点,就是被卷积后的图像.模版又称为卷积核.卷积核做一个矩阵的形状.

多谢各位大牛!受益匪浅。

  

爱华网本文地址 » http://www.aihuau.com/a/25101016/286136.html

更多阅读

信号量实例 linux 信号量

PV原语的含义  P操作和V操作是不可中断的程序段,称为原语。PV原语及信号量的概念都是由荷兰科学家E.W.Dijkstra提出的。信号量sem是一整数,sem大于等于零时代表可供并发进程使用的资源实体数,但sem小于零时则表示正在等待使用临界区

手机信号弱怎么办 手机信号弱是哪里坏了

做为一个联动永通手机信号放大器的安装人员,经常有朋友和客户来问我有关手机辐射的问题,和手机基站辐射有多大。当然现在我们需要的是了解手机这样一个系统对我们的影响情况,首先我们需要了解几个基本的知识,一个是无线电信号的辐射功率

正弦信号发生器 cha电压

摘要:本设计以凌阳SPCE061A单片机为核心,基于直接数字频率合成(DDS)技术制作了一个频率值能任意调节的多功能信号源。该信号源在1KHZ~10MHZ范围能输出稳定可调的正弦波,并具有AM、ASK和PSK等调制功能。信号输出部分采用电流放大型宽带运

信号量上 java 信号量

转:一.什么是信号量信号量的使用主要是用来保护共享资源,使得资源在一个时刻只有一个进程(线程)所拥有。信号量的值为正的时候,说明它空闲。所测试的线程可以锁定而使用它。若为0,说明它被占用,测试的线程要进入睡眠队列中,等待被唤醒。

信道带宽 路由器信道选哪个好

信道带宽模拟信道模拟信道的带宽 W=f2-f1其中f1是信道能够通过的最低频率,f2是信道能够通过的最高频率,两者都是由信道的物理特性决定的。当组成信道的电路制成了,信道的带宽就决定了。为了使信号的传输的失真小些,信道要有足够的带宽

声明:《卷积的物理意义。 信号卷积的物理意义》为网友给力分享!如侵犯到您的合法权益请联系我们删除