空间向量是高中数学中的重要内容之一,是处理空间线线、线面、面面位置关系和夹角的重要工具,是高考考查的重要内容之一.运用向量方法研究立体几何问题思路简单,模式固定,避免了几何法中作辅助线的问题,从而降低了立体几何问题的难度.本文将空间向量在立体几何中的应用的重要考点和解题方法作以解析.
【考点及要求】
1.理解直线的方向向量与平面法向量.
2.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.
3.能用向量方法证明证明直线和平面位置关系的一些定理(包括三垂线定理).
4.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角计算问题,了解向量方法在研究集合问题中的应用.
【考点归纳分析】
考点1.利用空间向量证明空间垂直问题
利用空间向量证明空间线线、线面、面面垂直问题是高考考查的重点内容,考查形式灵活多样,常与探索性问题、平行问题、空间角问题结合,考查形式可以是小题,也可以是解答题的一部分,或解答题的某个环节,题目容易,是高考中的重要得分点.
【点评】对坐标系易建立的空间线线垂直判定(证明)问题,常用向量法,即通过证明所证直线的方向向量的数量积为0证明两直线垂直
【点评】对坐标系易建立的空间线面垂直问题,通常用向量法,先求出平面的法向量和直线的方向向量,证明平面法向量与直线的方向向量平行或者直接用向量法证明直线与平面内两条相交直线垂直,再用线面垂直判定定理即可.
【点评】对于易建立空间坐标系的面面垂直问题,常向量法,即先建立坐标系,求出两个平面的法向量,通过证明这两个平面的法向量垂直,即得面面垂直.
考点2.利用空间向量处理空间平行关系
空间线线、线面、面面平行关系问题是高考考查的另一个重点内容,考查的形式灵活多样,常与探索性问题、垂直问题、空间角问题结合,可以是小题,也可以是解答题的一个小题,题目的难度一般不大,是高考中的得分点之一
【点评】对于易建立坐标系的线面平行问题的向量解法,有两种思路:(1)用共面向量定理,证明直线的方向向量能用平面内两条相交直线的方向向量表示出来,即这三个向量共线,根据共面向量概念和直线在平面外,可得线面平行;(2)求出平面法向量,然后证明法向量与直线的方向向量垂直即可.对于探索性问题,通常先假设成立,设出相关点的坐标,利用相关知识,列出关于坐标的方程,若方程有解,则存在,否则不存在.注意,(1)设点的坐标时,利用点在某线段上,设出点分线段所成的比,用比表示坐标可以减少未知量,简化计算;(2)注意点的坐标的范围
【点评】对面面平行问题的向量方解法有两种思路,(1)利用向量证明一个面内两条相交直线分别与另一个平面平行,根据面面判定定理即得;(2)求出两个平面的法向量,证明这两个法向量平行,则这两个面就平行.
考点3利用空间向量处理异面直线夹角、线面角、二面角等空间角问题
异面直线夹角、线面角、二面角等空间角问题是高考考查的热点和重点,常与探索性问题、平行问题、垂直等问题结合,重点考查综合利用空间向量、空间平行与垂直的有关定理、空间角的相关概念解决空间角问题的能力,是立体几何中的难点,难度为中档难度.