方向梯度直方图HOG,HistogramofGradient 学习笔记二HOG正篇

1.介绍HOG(Histogram of OrientedGradient)2005CVPR会议上,法国国家计算机科学及自动控制研究所的Dalal等人提出的一种解决人体目标检测的图像描述子,该方法使用梯度方向直方图(Histogramof Oriented Gradients,简称HOG)特征来表达人体,提取人体的外形信息和运动信息,形成丰富的特征集。
2.生成过程1)图像归一化归一化图像的主要目的是提高检测器对光照的鲁棒性,因为实际的人体目标可能出现的各种不同的场合,检测器,必须对光照不太敏感才会有好的效果。
2)利用一阶微分计算图像梯度图像平滑对于灰度图像,一般为了去除噪点,所以会先利用离散高斯平滑模板进行平滑:高斯函数在不同平滑的尺度下进行对灰度图像进行平滑操作,Dalal等实验表明在下,人体检测效果最佳(即不做高斯平滑),使得错误率缩小了约一倍。不做平滑操作,可能原因:图像时基于边缘的,平滑会降低边缘信息的对比度,从而减少图像中的信号信息。梯度法求图像梯度一阶微分处理一般对灰度阶梯有较强的响应 一阶微分:


对于函数f(x,y),在其坐标(x,y)上的梯度是通过如下二维列向量定义的:这个向量的模值由下式给出:


因为模值的计算开销比较大,一般可以按如下公式近似求解:Dalal等人利用许多一阶微分模板进行求梯度近似值,但在实验中表明模板[-1,0,1]效果最好。采用模板[-1,0,1]为例计算图像梯度以及方向,通过梯度模板计算水平和垂直方向的梯度分别如下:
其中,分别表示该像素点的水平,垂直梯度值。计算该像素点的梯度值(梯度强度)以及梯度方向: 对于梯度方向的范围限定,一般采用无符号的范围,故梯度方向可表示为:

3)基于梯度幅值的方向权重投影HOG结构通常使用的HOG结构大致有三种:矩形HOG(简称为R-HOG),圆形HOG和中心环绕HOG。它们的单位都是Block(即块)。Dalal的试验证明矩形HOG和圆形HOG的检测效果基本一致,而环绕形HOG效果相对差一些。矩形HOG块的划分:一般一个块(Block)都由若干单元(Cell)组成,一个单元都有如干个像素点组成。
在每个Cell中有独立做梯度方向统计,从而以梯度方向为横轴的的直方图,前面我们已经提到过,梯度方向可取0度到180度或0度~360度,但dalal实验表明,对于人体目标检测0度~180度这种忽略度数正负级的方向范围能够取得更好的结果。然后又将这个梯度分布平均分成个方向角度(orientation bins),每个方向角度范围都会对应一个直方柱。根据Dalal等人实验,在人体目标检测中,在无符号方向角度范围并将其平均分成9份(bins)能取得最好的效果,当bin的数目继续增大效果改变不明显,故一般在人体目标检测中使用bin数目为9范围0~180度的度量方式。Block中各个参数的最终选取:对于人体对象检测,块的大小为3×3个单元格,单元格的大小为6×6个象素时,检测效果是最好的,错误率约为10%左右。块的大小为2×2个单元格,单元格大小为8×8个象素时,也相差无几。6-8个象素宽的单元格,2-3个单元格宽的块,其错误率都在最低的一个平面上。块的尺寸太大时标准化的作用被削弱了从而导致错误率上升,而如果块的尺寸太小时,有用的信息反而会被过滤掉。在实际应用中,在Block和Cell划分之后,对于得到各个像区域中,有时候还会为了进行一次高斯平滑,但是对于人体目标检测等问题,该步骤往往可以忽略,实际应用效果不大,估计在主要还是去除区域中噪点,因为梯度对于噪点相当敏感。对梯度方向的投影权重方式的选取:对于梯度方向的加权投影,一般都采用一个权重投影函数,它可以是像素点的梯度幅值,梯度幅值的平方根或梯度幅值的平方,甚至可以使梯度幅值的省略形式,它们都能够一定程度上反应出像素上一定的边缘信息。根据Dalal等人论文的测试结果,采用梯度幅值量级本身得到的检测效果最佳,使用量级的平方根会轻微降低检测结果,而使用二值的边缘权值表示会严重降低效果(约为5%个单位10-4FPPW(FalsePositives Per Window))。4)HOG特征向量归一化对block块内的HOG特征向量进行归一化。对block块内特征向量的归一化主要是为了使特征向量空间对光照,阴影和边缘变化具有鲁棒性。还有归一化是针对每一个block进行的,一般采用的归一化函数有以下四种:在人体检测系统中进行HOG计算时一般使用L2-norm,Dalal的文章也验证了对于人体检测系统使用L2-norm的时候效果最好。
5)得出HOG最终的特征向量
3.HOG的应用:主要用在object detection领域,特别是行人检测,智能交通系统,当然也有文章提到把HOG用在手势识别,人脸识别等方面。
4.HOG与SIFT区别HOG和SIFT都属于描述子,以及由于在具体操作上有很多相似的步骤,所以致使很多人误认为HOG是SIFT的一种,其实两者在使用目的和具体处理细节上是有很大的区别的。HOG与SIFT的主要区别如下:① SIFT是基于关键点特征向量的描述。② HOG是将图像均匀的分成相邻的小块,然后在所有的小块内统计梯度直方图。③ SIFT需要对图像尺度空间下对像素求极值点,而HOG中不需要。④ SIFT一般有两大步骤,第一个步骤是对图像提取特征点,而HOG不会对图像提取特征点。
5.HOG的优点:HOG表示的是边缘(梯度)的结构特征,因此可以描述局部的形状信息;位置和方向空间的量化一定程度上可以抑制平移和旋转带来的影响;采取在局部区域归一化直方图,可以部分抵消光照变化带来的影响。由于一定程度忽略了光照颜色对图像造成的影响,使得图像所需要的表征数据的维度降低了。而且由于它这种分块分单元的处理方法,也使得图像局部像素点之间的关系可以很好得到的表征。
6.HOG的缺点:描述子生成过程冗长,导致速度慢,实时性差;很难处理遮挡问题。由于梯度的性质,该描述子对噪点相当敏感
方向梯度直方图(HOG,HistogramofGradient)学习笔记二HOG正篇
此文属于转载加整理,参考地址已找不到,请见谅

  

爱华网本文地址 » http://www.aihuau.com/a/25101018/368405.html

更多阅读

中小学教师职业道德规范学习笔记

中小学教师职业道德规范学习笔记一、依法执教。学习和宣传马列主义、毛泽东思想和邓--同志建设有中国特色社会主义理论,拥护党的基本路线,全面贯彻国家教育方针,自觉遵守《教师法》等法律法规,在教育教学中同党和国家的方针政策保持一

伤寒学习笔记(下

伤寒学习笔记---14,桂枝用量问题?学习仲景药法,涉及用量问题。深入考证,固然不必,简单了解,实属必要。仅以桂枝为例,整理如下:基本资料:《现代中医药应用与研究大系》1985年版,简称《大系》。药法:凡例里说:“将其折合今之用量---,并结合笔者临床

关于闪光灯TTL的学习笔记

关于闪光灯TTL的学习笔记(转)俺注:一直对加闪光灯的拍摄比较疑惑,要知道并不是加开个闪光就一了百了的。特别是现在的专业闪灯,有好几种模式,都需要配合相机的测光使用。今天无意之间看到一篇解疑的文章,赶紧收集下来仔细学习。想学习下闪

“Doit,掌控每一天”学习笔记和使用感受

使用感受:学习经历:微信课,4节沪江职场讲座,准备报名参加易仁教主的威海线下活动。以上表明:我对Doit软件学习的决心,不仅仅是因为教主的推荐,更多的是对自我的挑战。参加“沪江网:掌控每一天活动:写感受,拿福利”是我做过的最漂亮的项目类事

声明:《方向梯度直方图HOG,HistogramofGradient 学习笔记二HOG正篇》为网友给力小青年分享!如侵犯到您的合法权益请联系我们删除