等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。以下是小编为您整理的关于2017年高考数学必考等差数列公式的相关资料,希望对您有所帮助。
高中数学知识点:等差数列公式
等差数列公式an=a1+(n-1)d
a1为首项,an为第n项的通项公式,d为公差
前n项和公式为:Sn=na1+n(n-1)d/2
Sn=(a1+an)n/2
若m+n=p+q则:存在am+an=ap+aq
若m+n=2p则:am+an=2ap
以上n.m.p.q均为正整数
解析:第n项的值an=首项+(项数-1)×公差
前n项的和Sn=首项×n+项数(项数-1)公差/2
公差d=(an-a1)÷(n-1)
项数=(末项-首项)÷公差+1
数列为奇数项时,前n项的和=中间项×项数
数列为偶数项,求首尾项相加,用它的和除以2
等差中项公式2an+1=an+an+2其中{an}是等差数列
通项公式:公差×项数+首项-公差
高中数学知识点:等差数列求和公式
若一个等差数列的首项为a1,末项为an那么该等差数列和表达式为:
S=(a1+an)n÷2
即(首项+末项)×项数÷2
前n项和公式
注意:n是正整数(相当于n个等差中项之和)
等差数列前N项求和,实际就是梯形公式的妙用:
上底为:a1首项,下底为a1+(n-1)d,高为n。
即[a1+a1+(n-1)d]* n/2={a1n+n(n-1)d}/2。
高中数学知识点:推理过程
设首项为 , 末项为 , 项数为 , 公差为 , 前 项和为 , 则有:
当d≠0时,Sn是n的二次函数,(n,Sn)是二次函数 的图象上一群孤立的点。利用其几何意义可求前n项和Sn的最值。
注意:公式一二三事实上是等价的,在公式一中不必要求公差等于一。
求和推导
证明:由题意得:
Sn=a1+a2+a3+。。。+an①
Sn=an+a(n-1)+a(n-2)+。。。+a1②
①+②得:
2Sn=[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an](当n为偶数时)
Sn={[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an]}/2
Sn=n(A1+An)/2 (a1,an,可以用a1+(n-1)d这种形式表示可以发现括号里面的数都是一个定值,即(A1+An)
基本公式
公式 Sn=(a1+an)n/2
等差数列求和公式
Sn=na1+n(n-1)d/2; (d为公差)
Sn=An2+Bn; A=d/2,B=a1-(d/2)
和为 Sn
首项 a1
末项 an
公差d
项数n
表示方法
等差数列基本公式:
末项=首项+(项数-1)×公差
项数=(末项-首项)÷公差+1
首项=末项-(项数-1)×公差
和=(首项+末项)×项数÷2
差:首项+项数×(项数-1)×公差÷2
说明
末项:最后一位数
首项:第一位数
项数:一共有几位数
和:求一共数的总和
本段通项公式
首项=2×和÷项数-末项
末项=2×和÷项数-首项
末项=首项+(项数-1)×公差:a1+(n-1)d
项数=(末项-首项)/ 公差+1 :n=(an-a1)/d+1
公差= d=(an-a1)/n-1
如:1+3+5+7+……99 公差就是3-1
将a1推广到am,则为:
d=(an-am)/n-m
基本性质
若 m、n、p、q∈N
①若m+n=p+q,则am+an=ap+aq
②若m+n=2q,则am+an=2aq(等差中项)
注意:上述公式中an表示等差数列的第n项。