Gelin hanshu
格林函数
Green's function
物理学中的一个重要函数在数学物理方法中,格林函数又称为源函数或影响函数,是英国人G.格林于1828年引入的。
物理学中单体量子理论所使用的格林函数,其定义稍有扩充。它满足方程: (-)(,,)=(-),其中是单粒子哈密顿量,可以包括外场及杂质势等。单格林函数在无序体系研究中有重要应用,例如用平均矩阵近似、相干势近似求态密度。
多体量子理论的格林函数自20世纪60年代以来已成为凝聚态理论研究的有力工具。目前物理当中格林函数常指用于研究大量相互作用粒子组成的体系的多体格林函数。多体格林函数代表某时某地向体系外加一个粒子,又于它时它地出现的几率振幅。格林函数描写粒子的传播行为,又称为传播子。
为了研究多粒子体系在大于绝对零度时的平衡态行为,引入了温度格林函数。由于温度的倒数和虚时间有形式上的对应,温度格林函数也称为虚时间格林函数。为了研究0K的非平衡态行为,[kg2]引入了0K的时间格林函数及闭路格林函数。
在量子场论中计算具体物理过程的矩阵元时,也常出现格林函数,其物理意义也是代表粒子传播的几率振幅。由于多体格林函数=0K时对应于它,所以量子场论中的费因曼图解法(见费因曼图)也可用于多体格林函数。重正化群方法近十年来也用于凝聚态研究中,例如近藤效应、一维导体。
参考书目
E. N. Economou, Green's Function in Quantum Physics,Springer-Verlag,Berlin,Heidelberg,1979.
A.A.阿布里科索夫等著,郝柏林译:《统计物理学中的量子场论方法》,科学出版社,北京,1963。(.., .. .., -, , ,1962.
G.D.Mahan,Many Particle Physics, Plenum Press, New York and london,1981.
刘福绥
以上就是网友分享的关于"格林函数"的相关资料,希望对您有所帮助,感谢您对爱华网的支持!