(2014襄阳)(10分)如图,A,P,B,C是⊙O上的四个点,∠APC=∠BPC=60°,过点A作⊙O的切线交BP的延长线于点D.
(1)求证:△ADP∽△BDA;
(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;
(3)若AD=2,PD=1,求线段BC的长.
(1)证明:作⊙O的直径AE,连接PE,
∵AE是⊙O的直径,AD是⊙O的切线,
∴∠DAE=∠APE=90°,
∴∠PAD+∠PAE=∠PAE+∠E=90°,
∴∠PAD=∠E,
∵∠PBA=∠E,∴∠PAD=∠PBA,
∵∠PAD=∠PBA,∠ADP=∠BDA,
∴△ADP∽△BDA;
(2)PA+PB=PC,
证明:在线段PC上截取PF=PB,连接BF,
∵PF=PB,∠BPC=60°,
∴△PBF是等边三角形,
∴PB=BF,∠BFP=60°,
∴∠BFC=180°﹣∠PFB=120°,
∵∠BPA=∠APC+∠BPC=120°,
∴∠BPA=∠BFC,
在△BPA和△BFC中,,
∴△BPA≌△BFC(AAS),
∴PA=FC,AB=BC,
∴PA+PB=PF+FC=PC;
(3)解:∵△ADP∽△BDA,
∴==,
∵AD=2,PD=1
∴BD=4,AB=2AP,
∴BP=BD﹣DP=3,
∵∠APD=180°﹣∠BPA=60°,
∴∠APD=∠APC,
∵∠PAD=∠E,∠PCA=∠E,
∴PAD=∠PCA,
∴△ADP∽△CAP,
∴=,
∴AP2=CP•PD,
∴AP2=(3+AP)•1,
解得:AP=或AP=(舍去),
∴BC=AB=2AP=1+.