全等三角形辅助线作法 【备战期末】“三角形”作辅助线方法大全,强烈推荐!

数姐有话

对于初二的同学来说,三角形与全等三角形,才是同学们正式接触几何,而在这块内容中,辅助线又是必不可少的,所以,希望同学们好好学习这块内容,对于以后学习更难的几何知识打下基础!


1在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.


例:已知D为△ABC内任一点,求证:∠BDC>∠BAC


证明:


(一):延长BD交AC于E,

∵∠BDC是△EDC

的外角,

∴∠BDC>∠DEC


同理:∠DEC>∠BAC

∴∠BDC>∠BAC


证法(二):连结AD,并延长交BC于F

∵∠BDF是△ABD的外角,

∴∠BDF>∠BAD

同理∠CDF>∠CAD

∴∠BDF+∠CDF>∠BAD+∠CAD

即:∠BDC>∠BAC


2有角平分线时常在角两边截取相等的线段,构造全等三角形.


例:已知,如图,AD为△ABC的中线且∠1 = ∠2,∠3 = ∠4,

求证:BE+CF>EF


证明:

在DA上截取DN = DB,连结NE、NF,

则DN= DC

在△BDE和△NDE中,

DN = DB

∠1 = ∠2

ED = ED

∴△BDE≌△NDE

∴BE = NE

同理可证:CF = NF

在△EFN中,EN+FN>EF

∴BE+CF>EF


3有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.

例:已知,如图,AD为△ABC的中线,且∠1 = ∠2,∠3 = ∠4,求证:BE+CF>EF

证明:


延长ED到M,使DM = DE,连结CM、FM

△BDE和△CDM中,

BD = CD

∠1 = ∠5

ED = MD

∴△BDE≌△CDM

∴CM = BE

又∵∠1 = ∠2,∠3 = ∠4

∠1+∠2+∠3 + ∠4 = 180°

∴∠3 +∠2 = 90°

即∠EDF = 90°

∴∠FDM = ∠EDF = 90°

△EDF和△MDF中

ED = MD

∠FDM = ∠EDF

DF = DF

∴△EDF≌△MDF

∴EF = MF

∵在△CMF中,CF+CM >MF

BE+CF>EF

(此题也可加倍FD,证法同上)


4在三角形中有中线时,常加倍延长中线构造全等三角形.

例:已知,如图,AD为△ABC的中线,求证:AB+AC>2AD


证明:


延长AD至E,使DE = AD,连结BE

∵AD为△ABC的中线

∴BD = CD

在△ACD和△EBD中

BD = CD

∠1 = ∠2

AD = ED

∴△ACD≌△EBD

∵△ABE中有AB+BE>AE

∴AB+AC>2AD


5截长补短作辅助线的方法


截长法:在较长的线段上截取一条线段等于较短线段;

补短法:延长较短线段和较长线段相等.

这两种方法统称截长补短法.


当已知或求证中涉及到线段a、b、c、d有下列情况之一时用此种方法:

①a>b

②a±b = c

③a±b = c±d


例:已知,如图,在△ABC中,AB>AC,∠1 = ∠2,P为AD上任一点,

求证:AB-AC>PB-PC


证明:




⑴截长法:在AB上截取AN = AC,连结PN

在△APN和△APC中,

AN = AC

∠1 = ∠2

AP = AP

∴△APN≌△APC

∴PC = PN

∵△BPN中有PB-PC<BN

∴PB-PC<AB-AC


⑵补短法:延长AC至M,使AM = AB,连结PM

在△ABP和△AMP中

AB = AM

∠1 = ∠2

AP = AP

∴△ABP≌△AMP

∴PB = PM

又∵在△PCM中有CM >PM-PC

∴AB-AC>PB-PC


练习:


1.已知,在△ABC中,∠B = 60°,AD、CE是△ABC的角平分线,并且它们交于点O

求证:AC = AE+CD


2.已知,如图,AB∥CD,∠1 = ∠2 ,∠3 = ∠4.

求证:BC = AB+CD




6证明两条线段相等的步骤:

①观察要证线段在哪两个可能全等的三角形中,然后证这两个三角形全等。

②若图中没有全等三角形,可以把求证线段用和它相等的线段代换,再证它们所在的三角形全等.

③如果没有相等的线段代换,可设法作辅助线构造全等三角形.


例:如图,已知,BE、CD相交于F,∠B = ∠C,∠1 = ∠2,求证:DF = EF

证明:∵∠ADF =∠B+∠3

∠AEF = ∠C+∠4

又∵∠3 = ∠4


∠B = ∠C

∴∠ADF = ∠AEF

在△ADF和△AEF中

∠ADF = ∠AEF

∠1 = ∠2

AF = AF

∴△ADF≌△AEF

∴DF = EF


7在一个图形中,有多个垂直关系时,常用同角(等角)的余角相等来证明两个角相等.


例:已知,如图Rt△ABC中,AB = AC,∠BAC = 90°,过A作任一条直线AN,作BD⊥AN于D,CE⊥AN于E,求证:DE = BD-CE


证明:


∵∠BAC = 90° BD⊥AN

∴∠1+∠2 = 90o ∠1+∠3 = 90°

∴∠2 = ∠3

∵BD⊥AN CE⊥AN

∴∠BDA =∠AEC = 90°

在△ABD和△CAE中,

∠BDA =∠AEC

∠2 = ∠3

AB = AC

∴△ABD≌△CAE

∴BD = AE且AD = CE

∴AE-AD = BD-CE

∴DE = BD-CE


8三角形一边的两端点到这边的中线所在的直线的距离相等.

例:AD为△ABC的中线,且CF⊥AD于F,BE⊥AD的延长线于E

求证:BE = CF

证明:(略)



9条件不足时延长已知边构造三角形.

例:已知AC = BD,AD⊥AC于A,BCBD于B

求证:AD = BC


证明:分别延长DA、CB交于点E

∵AD⊥AC BC⊥BD

∴∠CAE = ∠DBE = 90°

在△DBE和△CAE中

∠DBE =∠CAE

BD = AC

∠E =∠E

∴△DBE≌△CAE

∴ED = EC,EB = EA

∴ED-EA = EC- EB

∴AD = BC


10连接四边形的对角线,把四边形问题转化成三角形来解决问题.

例:已知,如图,AB∥CD,AD∥BC

求证:AB = CD

证明:


连结AC(或BD)

∵AB∥CD,AD∥BC

∴∠1 = ∠2

在△ABC和△CDA中,

∠1 = ∠2

AC = CA

∠3 = ∠4

∴△ABC≌△CDA

∴AB = CD


练习:


已知,如图,AB = DC,AD = BC,DE = BF,

求证:BE = DF


11有和角平分线垂直的线段时,通常把这条线段延长。可归结为“角分垂等腰归”.

例:已知,如图,在Rt△ABC中,AB = AC,∠BAC = 90°,∠1 = ∠2 ,CE⊥BD的延长线于E

求证:BD = 2CE


证明:

分别

延长BA、CE交于F

∵BE⊥CF

∴∠BEF =∠BEC = 90°

在△BEF和△BEC中

∠1 = ∠2

BE = BE

∠BEF =∠BEC

∴△BEF≌△BEC

∴CE = FE =1/2CF

∵∠BAC = 90° , BE⊥CF

∴∠BAC = ∠CAF = 90°

∠1+∠BDA = 90°

∠1+∠BFC = 90°

∠BDA = ∠BFC

在△ABD和△ACF中

∠BAC = ∠CAF

∠BDA = ∠BFC

AB = AC

∴△ABD≌△ACF

∴BD = CF

∴BD = 2CE


全等三角形辅助线作法 【备战期末】“三角形”作辅助线方法大全,强烈推荐!

练习:


已知,如图,∠ACB = 3∠B,∠1 =∠2,CD⊥AD于D,

求证:AB-AC = 2CD



12当证题有困难时,可结合已知条件,把图形中的某两点连接起来构造全等三角形.


例:已知,如图,AC、BD相交于O,且AB = DC,AC = BD,

求证:∠A = ∠D

证明:(连结BC,过程略)




13当证题缺少线段相等的条件时,可取某条线段中点,为证题提供条件.

例:已知,如图,AB = DC,∠A = ∠D

求证:∠ABC = ∠DCB

证明:分别取AD、BC中点N、M,

连结NB、NM、NC(过程略)


14有角平分线时,常过角平分线上的点向角两边做垂线,利用角平分线上的点到角两边距离相等证题.

例:已知,如图,∠1 = ∠2 ,P为BN上一点,且PD⊥BC于D,AB+BC = 2BD,

求证:∠BAP+∠BCP = 180°



证明:过P作PE⊥BA于E

∵PD⊥BC,∠1 = ∠2

∴PE = PD

在Rt△BPE和Rt△BPD中

BP = BP

PE = PD

∴Rt△BPE≌Rt△BPD

∴BE = BD

∵AB+BC = 2BD,BC = CD+BD,AB = BE-AE

∴AE = CD

∵PE⊥BE,PD⊥BC

∠PEB =∠PDC = 90°

在△PEA和△PDC中

PE = PD

∠PEB =∠PDC

AE =CD

∴△PEA≌△PDC

∴∠PCB = ∠EAP

∵∠BAP+∠EAP = 180°

∴∠BAP+∠BCP = 180°


练习:


1.已知,如图,PA、PC分别是△ABC外角∠MAC与∠NCA的平分线,它们交于P,PD⊥BM于M,PF⊥BN于F,求证:BP为∠MBN的平分线


2. 已知,如图,在△ABC中,∠ABC =100o,∠ACB = 20°,CE是∠ACB的平分线,D是AC上一点,若∠CBD = 20°,求∠CED的度数。


15有等腰三角形时常用的辅助线


⑴作顶角的平分线,底边中线,底边高线


例:已知,如图,AB = AC,BD⊥AC于D,

求证:∠BAC = 2∠DBC



证明:

(方法一)作∠BAC的平分线AE,交BC于E,则∠1 = ∠2 = 1/2∠BAC

又∵AB = AC

∴AE⊥BC

∴∠2+∠ACB = 90°

∵BD⊥AC

∴∠DBC+∠ACB = 90°

∴∠2 = ∠DBC

∴∠BAC = 2∠DBC

(方法二)过A作AE⊥BC于E(过程略)

(方法三)取BC中点E,连结AE(过程略)


⑵有底边中点时,常作底边中线


例:已知,如图,△ABC中,AB = AC,D为BC中点,DE⊥AB于E,DF⊥AC于F,

求证:DE = DF


证明:连结AD.

∵D为BC中点,

∴BD = CD

又∵AB =AC

∴AD平分∠BAC

∵DE⊥AB,DF⊥AC

∴DE = DF


⑶将腰延长一倍,构造直角三角形解题


例:已知,如图,△ABC中,AB = AC,在BA延长线和AC上各取一点E、F,使AE = AF,求证:EF⊥BC


证明:延长BE到N,使AN = AB,连结CN,则AB = AN = AC

∴∠B = ∠ACB, ∠ACN = ∠ANC

∵∠B+∠ACB+∠ACN+∠ANC = 180°

∴2∠BCA+2∠ACN = 180°

∴∠BCA+∠ACN = 90°

即∠BCN = 90°

∴NC⊥BC

∵AE = AF

∴∠AEF = ∠AFE

又∵∠BAC = ∠AEF +∠AFE

∠BAC = ∠ACN +∠ANC

∴∠BAC =2∠AEF = 2∠ANC

∴∠AEF = ∠ANC

∴EF∥NC

∴EF⊥BC


⑷常过一腰上的某一已知点做另一腰的平行线


例:已知,如图,在△ABC中,AB = AC,D在AB上,E在AC延长线上,且BD = CE,连结DE交BC于F

求证:DF = EF


证明:(证法一)


过D作DN∥AE,交BC于N,则∠DNB = ∠ACB,∠NDE = ∠E,

∵AB = AC,

∴∠B = ∠ACB

∴∠B =∠DNB

∴BD = DN

又∵BD = CE

∴DN = EC

在△DNF和△ECF中

∠1 = ∠2

∠NDF =∠E

DN = EC

∴△DNF≌△ECF

∴DF = EF

(证法二)


过E作EM∥AB交BC延长线于M,则∠EMB =∠B(过程略)

⑸常过一腰上的某一已知点做底的平行线


例:已知,如图,△ABC中,AB =AC,E在AC上,D在BA延长线上,且AD = AE,连结DE

求证:DE⊥BC


证明:(证法一)过点E作EF∥BC交AB于F,则

∠AFE =∠B

∠AEF =∠C

∵AB = AC

∴∠B =∠C

∴∠AFE =∠AEF

∵AD = AE

∴∠AED =∠ADE

又∵∠AFE+∠AEF+∠AED+∠ADE = 180o

∴2∠AEF+2∠AED = 90o

即∠FED = 90o

∴DE⊥FE

又∵EF∥BC

∴DE⊥BC

(证法二)过点D作DN∥BC交CA的延长线于N,(过程略)

(证法三)过点A作AM∥BC交DE于M,(过程略)


⑹常将等腰三角形转化成特殊的等腰三角形------等边三角形


例:已知,如图,△ABC中,AB = AC,∠BAC = 80o ,P为形内一点,若∠PBC = 10o ∠PCB = 30o 求∠PAB的度数.


解法一:以AB为一边作等边三角形,连结CE

则∠BAE =∠ABE = 60o

AE = AB = BE

∵AB = AC

∴AE = AC ∠ABC =∠ACB

∴∠AEC =∠ACE

∵∠EAC =∠BAC-∠BAE

= 80°-60° = 20°

∴∠ACE = 1/2(180°-∠EAC)= 80°

∵∠ACB= 1/2(180°-∠BAC)= 50°

∴∠BCE =∠ACE-∠ACB

= 80°-50° = 30°

∵∠PCB = 30°

∴∠PCB = ∠BCE

∵∠ABC =∠ACB = 50°, ∠ABE = 60°

∴∠EBC =∠ABE-∠ABC = 60°-50° =10°

∵∠PBC = 10°

∴∠PBC = ∠EBC

在△PBC和△EBC中

∠PBC = ∠EBC

BC = BC

∠PCB = ∠BCE

∴△PBC≌△EBC

∴BP = BE

∵AB = BE

∴AB = BP

∴∠BAP =∠BPA

∵∠ABP =∠ABC-∠PBC = 50°-10° = 40°

∴∠PAB = 1/2(180°-∠ABP)= 70°

解法二:

以AC为一边作等边三角形,证法同一。


解法三:



以BC为一边作等边三角形△BCE,连结AE,则

EB = EC = BC,∠BEC =∠EBC = 60o

∵EB = EC

∴E在BC的中垂线上

同理A在BC的中垂线上

∴EA所在的直线是BC的中垂线

∴EA⊥BC

∠AEB = 1/2∠BEC = 30° =∠PCB

由解法一知:∠ABC = 50°

∴∠ABE = ∠EBC-∠ABC = 10°=∠PBC

∵∠ABE =∠PBC,BE = BC,∠AEB =∠PCB

∴△ABE≌△PBC

∴AB = BP

∴∠BAP =∠BPA

∵∠ABP =∠ABC-∠PBC = 50°-10°= 40°

∴∠PAB = 1/2(180o-∠ABP) = 1/2(180°-40°)= 70°


16有二倍角时常用的辅助线


⑴构造等腰三角形使二倍角是等腰三角形的顶角的外角


例:

已知,如图,在△ABC中,∠1 = ∠2,∠ABC = 2∠C,

求证:AB+BD = AC


证明:延长AB到E,使BE = BD,连结DE

则∠BED = ∠BDE

∵∠ABD =∠E+∠BDE

∴∠ABC =2∠E

∵∠ABC = 2∠C

∴∠E = ∠C

在△AED和△ACD中

∠E = ∠C

∠1 = ∠2

AD = AD

∴△AED≌△ACD

∴AC = AE

∵AE = AB+BE

∴AC = AB+BE

即AB+BD = AC


⑵平分二倍角


例:已知,如图,在△ABC中,BD⊥AC于D,∠BAC = 2∠DBC

求证:∠ABC = ∠ACB


证明:作∠BAC的平分线AE交BC于E,则∠BAE = ∠CAE = ∠DBC

∵BD⊥AC

∴∠CBD +∠C = 90o

∴∠CAE+∠C= 90o

∵∠AEC= 180o-∠CAE-∠C= 90o

∴AE⊥BC

∴∠ABC+∠BAE = 90o

∵∠CAE+∠C= 90o

∠BAE = ∠CAE

∴∠ABC = ∠ACB


⑶加倍小角

例:已知,如图,在△ABC中,BD⊥AC于D,∠BAC = 2∠DBC

求证:∠ABC = ∠ACB

证明:作∠FBD =∠DBC,BF交AC于F(过程略)


17有垂直平分线时常把垂直平分线上的点与线段两端点连结起来.

例:已知,如图,△ABC中,AB = AC,∠BAC = 120o,EF为AB的垂直平分线,EF交BC于F,交AB于E

求证:BF =1/2FC

证明:连结AF,则AF = BF

∴∠B =∠FAB

∵AB = AC

∴∠B =∠C

∵∠BAC = 120o

∴∠B =∠C∠BAC =1/2(180°-∠BAC) = 30°

∴∠FAB = 30°

∴∠FAC =∠BAC-∠FAB = 120°-30° =90°

又∵∠C = 30°

∴AF = 1/2FC

∴BF =1/2FC


练习:


已知,如图,在△ABC中,∠CAB的平分线AD与BC的垂直平分线DE交于点D,DM⊥AB于M,DN⊥AC延长线于N

求证:BM = CN



18有垂直时常构造垂直平分线.

例:已知,如图,在△ABC中,∠B =2∠C,AD⊥BC于D

求证:CD = AB+BD

证明:



(一)在CD上截取DE = DB,连结AE,则AB = AE

∴∠B =∠AEB

∵∠B = 2∠C

∴∠AEB = 2∠C

又∵∠AEB = ∠C+∠EAC

∴∠C =∠EAC

∴AE = CE

又∵CD = DE+CE

∴CD = BD+AB


(二)延长CB到F,使DF = DC,连结AF则AF =AC(过程略)



19有中点时常构造垂直平分线.

例:已知,如图,在△ABC中,BC = 2AB, ∠ABC = 2∠C,BD = CD

求证:△ABC为直角三角形


证明:过D作DE⊥BC,交AC于E,连结BE,则BE = CE,

∴∠C =∠EBC

∵∠ABC = 2∠C

∴∠ABE =∠EBC

∵BC = 2AB,BD = CD

∴BD = AB

在△ABE和△DBE中

AB = BD

∠ABE =∠EBC

BE = BE

∴△ABE≌△DBE

∴∠BAE = ∠BDE

∵∠BDE = 90°

∴∠BAE = 90°

即△ABC为直角三角形

20当涉及到线段平方的关系式时常构造直角三角形,利用勾股定理证题.

例:已知,如图,在△ABC中,∠A = 90°,DE为BC的垂直平分线

求证:BE2-AE2 = AC2


证明:连结CE,则BE = CE

∵∠A = 90°

∴AE2+AC2 = EC2

∴AE2+AC2= BE2

∴BE2-AE2 = AC2


练习:


已知,如图,在△ABC中,∠BAC = 90°,AB = AC,P为BC上一点

求证:PB2+PC2= 2PA2



21条件中出现特殊角时常作高把特殊角放在直角三角形中.


例:已知,如图,在△ABC中,∠B = 45°,∠C = 30°,AB =根号2,求AC的长.


解:过A作AD⊥BC于D

∴∠B+∠BAD = 90°,

∵∠B = 45o,∠B = ∠BAD = 45°,

∴AD = BD

∵AB2 = AD2+BD2,AB =根号2

∴AD = 1

∵∠C = 30°,AD⊥BC

∴AC = 2AD = 2



  

爱华网本文地址 » http://www.aihuau.com/a/311051/512390273014.html

更多阅读

全等三角形的判定与性质 矩形的性质与判定

全等三角形的判定与性质——简介全等三角形是初中知识一个重点,考试时经常会以填空、选择、解答题的形式出现,所占分值比例较大,所以学习全等三角形尤为重要。全等三角形共有5种判定方式:SSS、SAS、ASA、AAS、HL。特殊情况下平移、旋转

全等三角形的教学设计 全等三角形的说课稿

全等三角形的教学设计九章乐园全等三角形教学设计全等三角形的教学设计:1、 学习方式:对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两个三角形间最简单,最常见的关系。它不仅是学习后面知识的基础,并且

正方形的性质和判定 全等三角形的判定与性质

全等三角形的判定与性质――简介全等三角形是初中知识一个重点,考试时经常会以填空、选择、解答题的形式出现,所占分值比例较大,所以学习全等三角形尤为重要。全等三角形共有5种判定方式:SSS、SAS、ASA、AAS、HL。特殊情况下平移、旋转

八年级数学全等三角形 八年级数学全等三角形测试题

八年级数学的全等三角形的知识学完了,教师们会出什么样的测试题给学生们复习呢?下面是小编为大家带来的关于八年级数学全等三角形测试题,希望会给大家带来帮助。八年级数学全等三角形测试题:1.已知图2-5-7中的两个三角形全等,则∠α的

声明:《全等三角形辅助线作法 【备战期末】“三角形”作辅助线方法大全,强烈推荐!》为网友爱你从没有顾忌分享!如侵犯到您的合法权益请联系我们删除