数姐有话
对于初二的同学来说,三角形与全等三角形,才是同学们正式接触几何,而在这块内容中,辅助线又是必不可少的,所以,希望同学们好好学习这块内容,对于以后学习更难的几何知识打下基础!
例:已知D为△ABC内任一点,求证:∠BDC>∠BAC
证明:
(一):延长BD交AC于E,
∵∠BDC是△EDC
的外角,
∴∠BDC>∠DEC
同理:∠DEC>∠BAC
∴∠BDC>∠BAC
证法(二):连结AD,并延长交BC于F
∵∠BDF是△ABD的外角,
∴∠BDF>∠BAD
同理∠CDF>∠CAD
∴∠BDF+∠CDF>∠BAD+∠CAD
即:∠BDC>∠BAC
例:已知,如图,AD为△ABC的中线且∠1 = ∠2,∠3 = ∠4,
求证:BE+CF>EF
证明:
在DA上截取DN = DB,连结NE、NF,
则DN= DC
在△BDE和△NDE中,
DN = DB
∠1 = ∠2
ED = ED
∴△BDE≌△NDE
∴BE = NE
同理可证:CF = NF
在△EFN中,EN+FN>EF
∴BE+CF>EF
例:已知,如图,AD为△ABC的中线,且∠1 = ∠2,∠3 = ∠4,求证:BE+CF>EF
证明:
延长ED到M,使DM = DE,连结CM、FM
△BDE和△CDM中,
BD = CD
∠1 = ∠5
ED = MD
∴△BDE≌△CDM
∴CM = BE
又∵∠1 = ∠2,∠3 = ∠4
∠1+∠2+∠3 + ∠4 = 180°
∴∠3 +∠2 = 90°
即∠EDF = 90°
∴∠FDM = ∠EDF = 90°
△EDF和△MDF中
ED = MD
∠FDM = ∠EDF
DF = DF
∴△EDF≌△MDF
∴EF = MF
∵在△CMF中,CF+CM >MF
BE+CF>EF
(此题也可加倍FD,证法同上)
例:已知,如图,AD为△ABC的中线,求证:AB+AC>2AD
证明:
延长AD至E,使DE = AD,连结BE
∵AD为△ABC的中线
∴BD = CD
在△ACD和△EBD中
BD = CD
∠1 = ∠2
AD = ED
∴△ACD≌△EBD
∵△ABE中有AB+BE>AE
∴AB+AC>2AD
截长法:在较长的线段上截取一条线段等于较短线段;
补短法:延长较短线段和较长线段相等.
这两种方法统称截长补短法.
当已知或求证中涉及到线段a、b、c、d有下列情况之一时用此种方法:
①a>b
②a±b = c
③a±b = c±d
例:已知,如图,在△ABC中,AB>AC,∠1 = ∠2,P为AD上任一点,
求证:AB-AC>PB-PC
证明:
⑴截长法:在AB上截取AN = AC,连结PN
在△APN和△APC中,
AN = AC
∠1 = ∠2
AP = AP
∴△APN≌△APC
∴PC = PN
∵△BPN中有PB-PC<BN
∴PB-PC<AB-AC
⑵补短法:延长AC至M,使AM = AB,连结PM
在△ABP和△AMP中
AB = AM
∠1 = ∠2
AP = AP
∴△ABP≌△AMP
∴PB = PM
又∵在△PCM中有CM >PM-PC
∴AB-AC>PB-PC
练习:
1.已知,在△ABC中,∠B = 60°,AD、CE是△ABC的角平分线,并且它们交于点O
求证:AC = AE+CD
2.已知,如图,AB∥CD,∠1 = ∠2 ,∠3 = ∠4.
求证:BC = AB+CD
①观察要证线段在哪两个可能全等的三角形中,然后证这两个三角形全等。
②若图中没有全等三角形,可以把求证线段用和它相等的线段代换,再证它们所在的三角形全等.
③如果没有相等的线段代换,可设法作辅助线构造全等三角形.
例:如图,已知,BE、CD相交于F,∠B = ∠C,∠1 = ∠2,求证:DF = EF
证明:∵∠ADF =∠B+∠3
∠AEF = ∠C+∠4
又∵∠3 = ∠4
∠B = ∠C
∴∠ADF = ∠AEF
在△ADF和△AEF中
∠ADF = ∠AEF
∠1 = ∠2
AF = AF
∴△ADF≌△AEF
∴DF = EF
例:已知,如图Rt△ABC中,AB = AC,∠BAC = 90°,过A作任一条直线AN,作BD⊥AN于D,CE⊥AN于E,求证:DE = BD-CE
证明:
∵∠BAC = 90° BD⊥AN
∴∠1+∠2 = 90o ∠1+∠3 = 90°
∴∠2 = ∠3
∵BD⊥AN CE⊥AN
∴∠BDA =∠AEC = 90°
在△ABD和△CAE中,
∠BDA =∠AEC
∠2 = ∠3
AB = AC
∴△ABD≌△CAE
∴BD = AE且AD = CE
∴AE-AD = BD-CE
∴DE = BD-CE
例:AD为△ABC的中线,且CF⊥AD于F,BE⊥AD的延长线于E
求证:BE = CF
证明:(略)
例:已知AC = BD,AD⊥AC于A,BCBD于B
求证:AD = BC
证明:分别延长DA、CB交于点E
∵AD⊥AC BC⊥BD
∴∠CAE = ∠DBE = 90°
在△DBE和△CAE中
∠DBE =∠CAE
BD = AC
∠E =∠E
∴△DBE≌△CAE
∴ED = EC,EB = EA
∴ED-EA = EC- EB
∴AD = BC
例:已知,如图,AB∥CD,AD∥BC
求证:AB = CD
证明:
连结AC(或BD)
∵AB∥CD,AD∥BC
∴∠1 = ∠2
在△ABC和△CDA中,
∠1 = ∠2
AC = CA
∠3 = ∠4
∴△ABC≌△CDA
∴AB = CD
练习:
已知,如图,AB = DC,AD = BC,DE = BF,
求证:BE = DF
例:已知,如图,在Rt△ABC中,AB = AC,∠BAC = 90°,∠1 = ∠2 ,CE⊥BD的延长线于E
求证:BD = 2CE
证明:
分别
延长BA、CE交于F
∵BE⊥CF
∴∠BEF =∠BEC = 90°
在△BEF和△BEC中
∠1 = ∠2
BE = BE
∠BEF =∠BEC
∴△BEF≌△BEC
∴CE = FE =1/2CF
∵∠BAC = 90° , BE⊥CF
∴∠BAC = ∠CAF = 90°
∠1+∠BDA = 90°
∠1+∠BFC = 90°
∠BDA = ∠BFC
在△ABD和△ACF中
∠BAC = ∠CAF
∠BDA = ∠BFC
AB = AC
∴△ABD≌△ACF
∴BD = CF
∴BD = 2CE
练习:
已知,如图,∠ACB = 3∠B,∠1 =∠2,CD⊥AD于D,
求证:AB-AC = 2CD
例:已知,如图,AC、BD相交于O,且AB = DC,AC = BD,
求证:∠A = ∠D
证明:(连结BC,过程略)
例:已知,如图,AB = DC,∠A = ∠D
求证:∠ABC = ∠DCB
证明:分别取AD、BC中点N、M,
连结NB、NM、NC(过程略)
例:已知,如图,∠1 = ∠2 ,P为BN上一点,且PD⊥BC于D,AB+BC = 2BD,
求证:∠BAP+∠BCP = 180°
证明:过P作PE⊥BA于E
∵PD⊥BC,∠1 = ∠2
∴PE = PD
在Rt△BPE和Rt△BPD中
BP = BP
PE = PD
∴Rt△BPE≌Rt△BPD
∴BE = BD
∵AB+BC = 2BD,BC = CD+BD,AB = BE-AE
∴AE = CD
∵PE⊥BE,PD⊥BC
∠PEB =∠PDC = 90°
在△PEA和△PDC中
PE = PD
∠PEB =∠PDC
AE =CD
∴△PEA≌△PDC
∴∠PCB = ∠EAP
∵∠BAP+∠EAP = 180°
∴∠BAP+∠BCP = 180°
练习:
1.已知,如图,PA、PC分别是△ABC外角∠MAC与∠NCA的平分线,它们交于P,PD⊥BM于M,PF⊥BN于F,求证:BP为∠MBN的平分线
2. 已知,如图,在△ABC中,∠ABC =100o,∠ACB = 20°,CE是∠ACB的平分线,D是AC上一点,若∠CBD = 20°,求∠CED的度数。
⑴作顶角的平分线,底边中线,底边高线
例:已知,如图,AB = AC,BD⊥AC于D,
求证:∠BAC = 2∠DBC
证明:
(方法一)作∠BAC的平分线AE,交BC于E,则∠1 = ∠2 = 1/2∠BAC
又∵AB = AC
∴AE⊥BC
∴∠2+∠ACB = 90°
∵BD⊥AC
∴∠DBC+∠ACB = 90°
∴∠2 = ∠DBC
∴∠BAC = 2∠DBC
(方法二)过A作AE⊥BC于E(过程略)
(方法三)取BC中点E,连结AE(过程略)
⑵有底边中点时,常作底边中线
例:已知,如图,△ABC中,AB = AC,D为BC中点,DE⊥AB于E,DF⊥AC于F,
求证:DE = DF
证明:连结AD.
∵D为BC中点,
∴BD = CD
又∵AB =AC
∴AD平分∠BAC
∵DE⊥AB,DF⊥AC
∴DE = DF
⑶将腰延长一倍,构造直角三角形解题
例:已知,如图,△ABC中,AB = AC,在BA延长线和AC上各取一点E、F,使AE = AF,求证:EF⊥BC
证明:延长BE到N,使AN = AB,连结CN,则AB = AN = AC
∴∠B = ∠ACB, ∠ACN = ∠ANC
∵∠B+∠ACB+∠ACN+∠ANC = 180°
∴2∠BCA+2∠ACN = 180°
∴∠BCA+∠ACN = 90°
即∠BCN = 90°
∴NC⊥BC
∵AE = AF
∴∠AEF = ∠AFE
又∵∠BAC = ∠AEF +∠AFE
∠BAC = ∠ACN +∠ANC
∴∠BAC =2∠AEF = 2∠ANC
∴∠AEF = ∠ANC
∴EF∥NC
∴EF⊥BC
⑷常过一腰上的某一已知点做另一腰的平行线
例:已知,如图,在△ABC中,AB = AC,D在AB上,E在AC延长线上,且BD = CE,连结DE交BC于F
求证:DF = EF
证明:(证法一)
过D作DN∥AE,交BC于N,则∠DNB = ∠ACB,∠NDE = ∠E,
∵AB = AC,
∴∠B = ∠ACB
∴∠B =∠DNB
∴BD = DN
又∵BD = CE
∴DN = EC
在△DNF和△ECF中
∠1 = ∠2
∠NDF =∠E
DN = EC
∴△DNF≌△ECF
∴DF = EF
(证法二)
过E作EM∥AB交BC延长线于M,则∠EMB =∠B(过程略)
⑸常过一腰上的某一已知点做底的平行线
例:已知,如图,△ABC中,AB =AC,E在AC上,D在BA延长线上,且AD = AE,连结DE
求证:DE⊥BC
证明:(证法一)过点E作EF∥BC交AB于F,则
∠AFE =∠B
∠AEF =∠C
∵AB = AC
∴∠B =∠C
∴∠AFE =∠AEF
∵AD = AE
∴∠AED =∠ADE
又∵∠AFE+∠AEF+∠AED+∠ADE = 180o
∴2∠AEF+2∠AED = 90o
即∠FED = 90o
∴DE⊥FE
又∵EF∥BC
∴DE⊥BC
(证法二)过点D作DN∥BC交CA的延长线于N,(过程略)
(证法三)过点A作AM∥BC交DE于M,(过程略)
⑹常将等腰三角形转化成特殊的等腰三角形------等边三角形
例:已知,如图,△ABC中,AB = AC,∠BAC = 80o ,P为形内一点,若∠PBC = 10o ∠PCB = 30o 求∠PAB的度数.
解法一:以AB为一边作等边三角形,连结CE
则∠BAE =∠ABE = 60o
AE = AB = BE
∵AB = AC
∴AE = AC ∠ABC =∠ACB
∴∠AEC =∠ACE
∵∠EAC =∠BAC-∠BAE
= 80°-60° = 20°
∴∠ACE = 1/2(180°-∠EAC)= 80°
∵∠ACB= 1/2(180°-∠BAC)= 50°
∴∠BCE =∠ACE-∠ACB
= 80°-50° = 30°
∵∠PCB = 30°
∴∠PCB = ∠BCE
∵∠ABC =∠ACB = 50°, ∠ABE = 60°
∴∠EBC =∠ABE-∠ABC = 60°-50° =10°
∵∠PBC = 10°
∴∠PBC = ∠EBC
在△PBC和△EBC中
∠PBC = ∠EBC
BC = BC
∠PCB = ∠BCE
∴△PBC≌△EBC
∴BP = BE
∵AB = BE
∴AB = BP
∴∠BAP =∠BPA
∵∠ABP =∠ABC-∠PBC = 50°-10° = 40°
∴∠PAB = 1/2(180°-∠ABP)= 70°
解法二:
以AC为一边作等边三角形,证法同一。
解法三:
以BC为一边作等边三角形△BCE,连结AE,则
EB = EC = BC,∠BEC =∠EBC = 60o
∵EB = EC
∴E在BC的中垂线上
同理A在BC的中垂线上
∴EA所在的直线是BC的中垂线
∴EA⊥BC
∠AEB = 1/2∠BEC = 30° =∠PCB
由解法一知:∠ABC = 50°
∴∠ABE = ∠EBC-∠ABC = 10°=∠PBC
∵∠ABE =∠PBC,BE = BC,∠AEB =∠PCB
∴△ABE≌△PBC
∴AB = BP
∴∠BAP =∠BPA
∵∠ABP =∠ABC-∠PBC = 50°-10°= 40°
∴∠PAB = 1/2(180o-∠ABP) = 1/2(180°-40°)= 70°
⑴构造等腰三角形使二倍角是等腰三角形的顶角的外角
例:
已知,如图,在△ABC中,∠1 = ∠2,∠ABC = 2∠C,
求证:AB+BD = AC
证明:延长AB到E,使BE = BD,连结DE
则∠BED = ∠BDE
∵∠ABD =∠E+∠BDE
∴∠ABC =2∠E
∵∠ABC = 2∠C
∴∠E = ∠C
在△AED和△ACD中
∠E = ∠C
∠1 = ∠2
AD = AD
∴△AED≌△ACD
∴AC = AE
∵AE = AB+BE
∴AC = AB+BE
即AB+BD = AC
⑵平分二倍角
例:已知,如图,在△ABC中,BD⊥AC于D,∠BAC = 2∠DBC
求证:∠ABC = ∠ACB
证明:作∠BAC的平分线AE交BC于E,则∠BAE = ∠CAE = ∠DBC
∵BD⊥AC
∴∠CBD +∠C = 90o
∴∠CAE+∠C= 90o
∵∠AEC= 180o-∠CAE-∠C= 90o
∴AE⊥BC
∴∠ABC+∠BAE = 90o
∵∠CAE+∠C= 90o
∠BAE = ∠CAE
∴∠ABC = ∠ACB
⑶加倍小角
例:已知,如图,在△ABC中,BD⊥AC于D,∠BAC = 2∠DBC
求证:∠ABC = ∠ACB
证明:作∠FBD =∠DBC,BF交AC于F(过程略)
例:已知,如图,△ABC中,AB = AC,∠BAC = 120o,EF为AB的垂直平分线,EF交BC于F,交AB于E
求证:BF =1/2FC
证明:连结AF,则AF = BF
∴∠B =∠FAB
∵AB = AC
∴∠B =∠C
∵∠BAC = 120o
∴∠B =∠C∠BAC =1/2(180°-∠BAC) = 30°
∴∠FAB = 30°
∴∠FAC =∠BAC-∠FAB = 120°-30° =90°
又∵∠C = 30°
∴AF = 1/2FC
∴BF =1/2FC
练习:
已知,如图,在△ABC中,∠CAB的平分线AD与BC的垂直平分线DE交于点D,DM⊥AB于M,DN⊥AC延长线于N
求证:BM = CN
例:已知,如图,在△ABC中,∠B =2∠C,AD⊥BC于D
求证:CD = AB+BD
证明:
(一)在CD上截取DE = DB,连结AE,则AB = AE
∴∠B =∠AEB
∵∠B = 2∠C
∴∠AEB = 2∠C
又∵∠AEB = ∠C+∠EAC
∴∠C =∠EAC
∴AE = CE
又∵CD = DE+CE
∴CD = BD+AB
(二)延长CB到F,使DF = DC,连结AF则AF =AC(过程略)
例:已知,如图,在△ABC中,BC = 2AB, ∠ABC = 2∠C,BD = CD
求证:△ABC为直角三角形
证明:过D作DE⊥BC,交AC于E,连结BE,则BE = CE,
∴∠C =∠EBC
∵∠ABC = 2∠C
∴∠ABE =∠EBC
∵BC = 2AB,BD = CD
∴BD = AB
在△ABE和△DBE中
AB = BD
∠ABE =∠EBC
BE = BE
∴△ABE≌△DBE
∴∠BAE = ∠BDE
∵∠BDE = 90°
∴∠BAE = 90°
即△ABC为直角三角形
20当涉及到线段平方的关系式时常构造直角三角形,利用勾股定理证题.例:已知,如图,在△ABC中,∠A = 90°,DE为BC的垂直平分线
求证:BE2-AE2 = AC2
证明:连结CE,则BE = CE
∵∠A = 90°
∴AE2+AC2 = EC2
∴AE2+AC2= BE2
∴BE2-AE2 = AC2
练习:
已知,如图,在△ABC中,∠BAC = 90°,AB = AC,P为BC上一点
求证:PB2+PC2= 2PA2
例:已知,如图,在△ABC中,∠B = 45°,∠C = 30°,AB =根号2,求AC的长.
解:过A作AD⊥BC于D
∴∠B+∠BAD = 90°,
∵∠B = 45o,∠B = ∠BAD = 45°,
∴AD = BD
∵AB2 = AD2+BD2,AB =根号2
∴AD = 1
∵∠C = 30°,AD⊥BC
∴AC = 2AD = 2