1.想 数 码
例如,1989年“从小爱数学”邀请赛试题6:两个四位数相加,第一个四位数的每一个数码都不小于5,第二个四位数仅仅是第一个四位数的数码调换了位置。某同学的答数是16246。试问该同学的答数正确吗?(如果正确,请你写出这个四位数;如果不正确,请说明理由)。
思路一:易知两个四位数的四个数码之和相等,奇数+奇数=偶数,偶数+偶数=偶数,这两个四位数相加的和必为偶数。
相应位数两数码之和,个、十、百、千位分别是17、13、11、15。所以该同学的加法做错了。正确答案是
思路二:每个数码都不小于5,百位上两数码之和的11只有一种拆法5+6,另一个5只可能与8组成13,6只可能与9组成15。这样个位上的两个数码,8+9=16是不可能的。
不要把“数码调换了位置”误解为“数码顺序颠倒了位置。”
2.尾数法
例1 比较 1222×1222和 1221×1223的大小。
由两式的尾数2×2=4,1×3=3,且4>3。
知 1222×1222>1221×1223
例2 二数和是382,甲数的末位数是8,若将8去掉,两数相同。求这两个数。
由题意知两数的尾数和是12,乙数的末位和甲数的十位数字都是4。
由两数十位数字之和是8-1=7,知乙数的十位和甲数的百位数字都是3。
甲数是348,乙数是34。
例3 请将下式中的字母换成适当的数字,使算式成立。
由3和a5乘积的尾数是1,知a5只能是7;
由3和a4乘积的尾数是7-2=5,知a4是5;……不难推出原式为
142857×3=428571。
3.从较大数想起
例如,从1~10的十个数中,每次取两个数,要使其和大于10,有多少种取法?
思路一:较大数不可能取5或比5小的数。
取6有6+5;
取7有7+4,7+5,7+6;
…………………………………………
取10有九种 10+1,10+2,……10+9。
共为 1+3+5+7+9=25(种)。
思路二:两数不能相同。较小数为1的只有一种取法1+10;为2的有2+9,2+10;……较小数为9的有9+10。
共有取法1+2+3+4+5+4+3+2+1=25(种)
这是从较小数想起,当然也可从9或8、7、……开始。
思路三:两数和最大的是19。两数和大于10的是11、12、…、19。
和是11的有五种1+10,2+9,3+8,4+7,5+6;和是11~19的取法
5+4+4+3+3+2+2+1+1=25(种)。
4.想大小数之积
用最大与最小数之积作内项(或外项)的积,剩的相乘为外项(或内项)的积,由比例基本性质知
交换所得比例式各项的位置,可很快列出全部的八个比例式。
5.由得数想
例如,思考题:在五个0.5中间加上怎样的运算符号和括号,等式就成立?其结果是
0,0.5,1,1.5,2。
从得数出发,想:
两个相同数的差,等于0;
一个数加上或减去0,仍等于这个数;
一个因数是0,积就等于0;
0除以一个数(不是0),商等于0;
两个相同数的商为1;
1除以0.5,商等于2;……
解法很多,只举几种:
(0.5-0.5)×0.5×0.5×0.5=0
0.5-0.5-(0.5-0.5)×0.5=0
(0.5+0.5+0.5)×(0.5-0.5)=0
(0.5+0.5-0.5-0.5)×0.5=0
(0.5-0.5)×0.5×0.5+0.5=0.5
0.5+0.5+0.5-0.5-0.5=0.5
(0.5+0.5)×(0.5+0.5—0.5)=0.5
(0.5+0.5)×0.5+0.5-0.5=0.5
(0.5-0.5)×0.5+0.5+0.5=1
0.5÷0.5+(0.5-0.5)×0.5=1
(0.5-0.5)÷0.5+0.5+0.5=1
(0.5+0.5)÷0.5-(0.5+0.5)=1
0.5-0.5+0.5+0.5÷0.5=1.5
(0.5+0.5)×0.5+0.5+0.5=1.5
0.5+0.5+0.5+0.5-0.5=1.5
0.5÷0.5+0.5÷0.5-0.5=1.5
0.5÷0.5÷0.5+0.5-0.5=2
(0.5+0.5)÷0.5+0.5-0.5=2
(0.5+0.5+0.5-0.5)÷0.5=2
[(0.5+0.5)×0.5+0.5]÷0.5=2