幼儿数学思维课程 数学思维与人生

我个人是数学爱好者,也看过很多数学书,但是有一个问题却时常萦绕在脑海中:什么是数学思维?难道仅仅用标准严格的数学方法证明某个数学难题吗?

当然,答案是否定的。这从数学在许多学科中的作用和影响力可以看出。下面几个例子是自己在学习、生活和工作中的感悟,带有反思性,这里分享一下。我从小接受的教育是学习牛人的精华,集百家之长。直到毕业时,我还把这个观点当做指南针。现在,谈不上否定该观点,但却多了许多反思。通过对“系统性”这个词的反思,使得自己对“集百家之长”有了新的认识。给系统性下一个定义很难(就像如何定义椅子一样),举例子到更容易理解。比如微积分教材,里面包含微分、积分和级数这三大块,彼此之间既有联系,又有交叉。你不能只学微分学,就认为自己搞定微积分了。更形象的例子是把系统想象成一台复杂的机器:这台机器由许许多多零部件组成,单拿出来大部分零件都很简单平凡,少数部件非常复杂和精细,组装成机器之后看起来无比复杂。复杂性是系统的一个典型特征。精华部分一般指那种复杂和精细的部件。但是,整台机器若想正常工作,必须所有部件都密切配合,正常工作。如果某个简单平凡的部件坏掉了,则会影响整个系统的运行,甚至产生严重后果。很多重大事故的事后调查表明,造成杯具的原因往往是一些不起眼的小问题,比如某个铆钉松了,但后果太严重了。在实践中,我意识到学习某种技能必须系统地学习,环环相扣,小招和大招都得学。如果仅学一堆所谓精华,大都是孤立的,用起来恐怕适得其反。因为精华也是可以互相掣肘和抵消的,比如世界明星队未必踢得过巴西队。只有鲜花,没有绿叶,那不是春天,也谈不上美景。我的一位朋友像我抱怨,他们公司之所以效率低是因为聪明人太多。对此,我很不理解。后来,他解释道,一个个都太精明,都想当红花,专挑好活儿做。有些活费力不讨好,油水少,但是必不可少,结果大家谁都不愿意做。最终导致很多项目进度缓慢,效率低下。我后来才意识到,把这个公司看做一个系统,大家都想要精华,结果没人要做不精华的地方,这就是一个社会的例子。当然,这里必须强调,我的观点不是否定精华,也不是说糟粕好,而是指出必须从整体和系统的角度看问题。集百家之长固然美好,但是若没有很好的衔接,恐怕只是空中楼阁。实际上,一个人的天赋、能力和时间都是有限的,我感觉与其集百家之长,不如系统学习几样熟悉的东西实在。很多院士也就熟悉本专业2到3个分支,其它分支了解得也不深。如何系统学习呢?这是个很大的问题,没有统一的答案。我个人的经验是,如果你从事某一行,那么应该夯实基础,从经典教材学起,然后过度到操作手册,并不断实践。如果不是主业,可用的时间和精力有限。那么,可以看看该行业高手写得科普书和操作手册。一部该行业操作手册就是一个系统啊。我个人的经历表明,对于困扰外行的问题,弄得灰头土脸,在内行人看来这都不是事,很容易搞定。于是,敬佩之情犹如黄河之水,滔滔不绝。后来偶然看到该行业的操作手册才发现,原来困扰自己的大部分问题该怎么办,手册上都明明白白写着呢。所以,自己不断地留心搜集各行业操作手册,就像搜集数学文章一样。在搜集过程中,我发现绝大多数专业人士中,没多少人系统看本行业操作手册的。很多事故原因都是操作人员违规操作造成的,而正确的操作是什么,手册里明明白白写着呢。当然,有的操作手册里个别地方写得也有问题。

2、学人家的方法为什么学成四不像?

很多人都有这样的经历,学习别人的方法(假定方法确实好)后,发现为什么人家用的好,自己用的很差,到后来变成了四不像?于是感叹自己天赋不足之类的。有的方法确实是仅限于牛人使用的,但这样的情况是少数。

幼儿数学思维课程 数学思维与人生

关于四不像,自己也反思过,这里谈谈个人的不成熟看法。除了前面指出的要系统学,不能只学精华的原因。另一个重要原因是,很多人学习某种方法时都会进行局部调整或修改,所谓“自身化”(类似符合国情一样)。通常这种修改很小,也很自然,以至于很多人低估了其影响。其实,想想非欧几何就明白了,它只修改了平行公理,别得公理保持不变。但是由此得到的非欧几何与欧几里得几何差别可就大了。比如在双曲几何里,三角形面积不能任意大,相似即全等,不存在矩形等结论令人吃惊。我们作一下类比,将一套系统的方法视作一种理论。这套方法的基础或假设视作原理或公理。当你采取类似“符合国情”的修改某个原理时,得到的新理论体系已经不是原来体系了。更隐蔽的情况是修改推论,而不是原理。多数情况是,某人自认为自己承认那些原理,但是在后续实践中修改了某个推论(或定理)P,理由是要符合自身实际情况。假定他采用了“非P”作为定理。学过数学的人都知道,此时他已经否定了至少某一个公理,即推出命题P的那些公理。但是,他一直认为自己没有否定那些公理。于是,他自己都不知道,他已经是四不像了(自相矛盾)。当然,你不能说一套系统方法就是一套公理系统,但是可以类比。上面提及的问题在社会领域中更常见。

3、牛人常用“三系法”

“三系法”是自己起的名字,就是用三种互相独立的方法考虑同一个问题,可以增加胜算概率。三系法有直观的解释,考虑一个三个元件的并联系统,只有三个元件都坏掉了,此并联系统才无法工作。

我观察到一个现象:一套方法可以称为一个绝招,很多老手把这一招用得很熟练,但远不到出神入化的境界。有些牛人,并没有把某一招用的出神入化而取得成功,而是采用了组合招法。具体说,牛人把三个子系统组成一个总系统。他的解释是,真正的高手没几个玩高难度的,把自己逼到绝境,真正的高手应该像庖丁解牛一样。可能采用量化思想更直观一些,假设三个子系统的有效率为 ,则三个子系统构成的总系统有效利率为P=1?(1?P_1)(1?P_2)(1?P_3)我也反思过为什么是三个?个人看法是:现实中,互相独立这个条件太苛刻,也很难验证。两个子系统合成的有效率不够,三个恰好。理论上四个更好,但是独立性难以保证。实际应用中经常把独立性弱化为低相关性。很多商人不懂 这个公式,但在做生意时往往用到了三系法思想,比如,他做一笔买卖时,会找出尽可能多的理由,然后归类。很少,因为一个理由就做此买卖。理由越多,买卖盈利的胜算越大,这已经是三系法思想了。

4、实用的冗余思想

冗余是一个工程中非常普遍而实用的概念,类似余量和备份。举个例子,你设计一座桥梁,估计车辆正常行驶时的载重量是300吨,但是在建造时是桥梁按500吨的载重量设计的,这就是工程中的冗余思想(类似投资中的安全边际)。

我曾反思过为什么冗余思想在工程中如此广泛。目前找到两个理由:1、准确性考虑。接触过实际问题就会发现,现实世界比书本复杂多了,再考虑到可操作性因素,准确性很难做到,或者说基本无法做到。多数工程主要依赖实验,而不是理论。搞理论的人往往在实践中很尴尬。2、稳定性考虑。就实践来讲,稳定性往往比准确性重要。很多项目要考虑正常载荷、误差和极端情况等因素。不能说极端情况发生概率小就不予考虑,因为后果太严重。扩大安全空间可以增加稳定性,这种思想既自然,也具有可操作。理论上冗余越多越好,但是成本也自然上升。中国桥梁问题不少,但是一些老桥却相当“桥坚强”,其中的重要原因是这些老桥建筑材料后,冗余度大。当然,如果一个系统里的每一个零部件都采用很大的冗余度话,这个系统可能因为过于庞大而无法运转。所以,从系统角度讲哪些地方冗余度大一些,哪些地方冗余度小一些,这可是门学问和艺术。

这里提出以上四个问题,希望引起大家的反思。不能狭义地理解数学思维,要活学活用,移花接木也是一种创新。用数学思维不一定需要高深,平凡的数学也能闪耀智慧的光辉。

  

爱华网本文地址 » http://www.aihuau.com/a/334151/316603299421.html

更多阅读

幼儿早教课程 早教特色课程

幼儿早教课程——简介现在孩子就是父母的宝贝,就是父母的希望。不少家人对自己的孩子希望很大,都不想自己的孩子在起步落后于其他人,所以现在越来越多的早教机构收费离谱得惊人。一般的家庭是承受不了这样的压力的。其实现在社会很发达

幼儿数学启蒙,这样学计算对吗? 幼儿数学启蒙下载

植竣妈妈,你好!现在我很烦恼的一个问题,我孩子现在5岁多,还要上一年的幼儿园,在这个幼儿园里,在数学方面他们老师教的是手指算加减法,我很不能理解这样的计算方法。 最开始的时候,我不知道学校是这样教他们算数

幼儿数学加减法游戏 幼儿加减运算游戏-钓鱼

 儿加减运算游戏-钓鱼  游戏目标:发展幼儿思维能力,提高幼儿加减运算的技能。游戏玩法:1、准备一副去掉“JQK”的牌,四名幼儿一组。每人抓4张牌,放4张底牌,翻一张剩余的牌为要钓的鱼数。2、然后依次开始“钓鱼”,即用手中的牌加

幼儿园数学培训心得 幼儿数学培训心得体会

  幼儿数学培训心得体会一:  这次参加了河北省中小学幼儿教师全员培训,收获颇丰、受益非浅。在培训中,我进一步认识了新课程的发展方向和目标,反思了自己以往在工作中的不足。作为教师,我深知自己虽然参加工作二十多年,但在教学上还

幼儿思维发展的趋势 怎么让幼儿的思维发展

  婴儿时期只有对事物的感知、对事物之间联系的最初认识,基本上没有思维。到了幼儿期,思维的发展开始萌芽,表现在思维开始和语言相联系。但这时候幼儿的语言能力还很低,所以他们进行的思维总是与对事物的感知、和自身的行动分不开的。

声明:《幼儿数学思维课程 数学思维与人生》为网友我的世界不缺你分享!如侵犯到您的合法权益请联系我们删除