碳同位素负异常事件 陨石中原始同位素组成异常


碳同位素负异常事件 陨石中原始同位素组成异常
yunshi zhong yuanshi tongweisu zucheng yichang
陨石中原始同位素组成异常
primitive isotopic anomalies in meteorite

   整个太阳系是由同一星云凝聚形成的。按传统的看法,在行星形成之前,星云中各种来源的核合成成分发生有效 的混合和同位素均匀化作用,结果形成一个同位素“均一”的太阳系。如(Ba是S过程产物,而大多数(Ba是r过程产物。(Ba和(Ba生成区域极不相同(见)。然而地球、月球和的(Ba/(Ba比值之差小于0.01%,被认为是均一的。这种均一的同位素成分称为“正常”组分。太阳系有 3个已知过程可以引起正常组分的同位素丰度发生变化:①热扩散、化学反应等过程产生的分馏效应;②放射性核素的衰变;③引起的核反应。20世纪70年代以来,对陨石中同位素组成的研究,发现了不寻常的同位素丰度变化,这种变化不能用上述3个过程加以解释,就称之为“原始同位素组成异常”。这种异常可以根据与一定元素的太阳系同位素丰度之偏差加以确定。
 发现史 1972年布莱克 (D.C.Black)在对碳质球粒陨石进行分段加热实验中,首先发现了氖(Ne)的同位素异常成分(Ne-E),并提出了太阳系外成因的假设。当时由于Ne在陨石中的丰度极低而未引起重视。1973年,克莱顿 (R.N.Clayton)等人在阿连德等碳质球粒陨石中发现氧同位素异常,这才引起人们对陨石中原始同位素组成异常的强烈关注。氧同位素异常表明,太阳系的一种主要元素的同位素组成是不均一的。这一发现是太阳系物质同位素组成研究方面的一项重大突破。以后还发现了氙(Xe)同位素异常,又在阿连德碳质球粒陨石包体Cl和EK1-4-1中发现了彼此相关的多种元素的同位素异常。
 同位素异常成分 陨石中已发现的原始同位素异常成分有:
 氖-E(Ne-E) 陨石中Ne有5种组分,Ne-E是一种富重Ne同位素((Ne)的成分,或许是一种纯(Ne组分(见)。
 氧 在地球和陨石物质中,(O/(O的值不同,这种不同长期被认为是质量分馏效应引起的。碳质球粒陨石矿物氧同位素组成研究表明,C2、C3和C4型陨石物质(O的比例比地球物质要高些,最多可高5%。因其差异不与同位素的质量差成正比,故不是来源于化学分馏作用。克莱顿等认为陨石中的氧是由一个类似于地球氧同位素组成的正常组分和另一个接近于纯(O的异常组分组成的混合物。后者应是一种核效应的产物。但它不是在陨石原处发生的核效应,因为没有任何一个氧同位素含有天然放射性母体。同时,也未曾观察到宇宙线照射所引起的其他核效应。因此,氧同位素异常被认为是由于原始不均一性引起的异常。这种异常不仅反映在同一陨石的不同矿物和包体之间,而且在不同陨石之间也呈现出这种异常。陨石中额外的(O的最合理来源是超新星爆炸,使He燃烧生成的(O加入到正在凝聚的太阳星云中。
 已灭绝的放射性核素 有4种现在已灭绝了的放射性核素存在于早期太阳系:(I(半衰期1.7×10(年)、(Pu(半衰期8.2×10(年)、(Al(半衰期7.3×10(年)和(Pd(半衰期6.5×10(年)。陨石保存过剩的(Xe,是(I早期存在于陨石中的证据,陨石形成时的(I/(I比值约为10(。但(Pu存在的证据是它的自发裂变产物(Xe(Xe、(Xe和(Xe,陨石形成时的(Pu/(U比值为0.015。通过陨石中存在过剩的(Mg确证(Al存在于早期太阳系,陨石形成时的(Al/(Al比值为5×10(。(Pd可由(Ag过剩确定其存在,陨石形成时的(Pd/(Pd比值为2×10(。由(Pu和(I获得的太阳系形成间隔年龄为 10(年量级。但由(Al获得的最后核合成事件与太阳系固体凝聚之间的时间间隔在 10(年量级。也就是前太阳星云开始塌缩和陨石形成之间的间隔由 10(年减少到10(年量级。短寿命的(Al不可能活到10(年。因此,有理由认为在陨石形成之前很短暂的时间内,必然有新合成的某些物质(包括(Al、(O等)通过超新星爆发加到前太阳星云中。
 氙 碳质球粒陨石中俘获的氙同位素组分不仅富集重氙同位素(
Xe、(Xe、(Xe、(Xe,而且也富集轻氙同位素(Xe、(Xe和(Xe,被称为Xe-X。但太阳系内已知过程不可能产生Xe-X这样的同位素丰度模型,它应是一种原始同位素异常。此外,还发现了一种氙的同位素组分,被称为Xe-S,它是在高温加热时陨石释放出来的一种微量组分。它富集S过程的产物(Xe、(Xe和(Xe,是存在于前太阳尘埃颗粒中的一种原始同位素组分。
 阿连德陨石包体C1和EK1-4-1  主要是由粗粒黄长石、辉石和尖晶石等矿物晶体组成的两种特殊包体。在这两种包体中,几乎所有被分析过的元素(如 O、Mg、Si、Ca、Sr、Ba、Nd和Sm)都显示同位素组成异常。重元素主要表现为核效应的影响,轻元素同时显示质量分馏效应和核效应的影响。
 ①氧、镁和硅 EK1-4-1和C1中不同的矿物含有不同的氧成分。C1的异常值Δ((Mg/(Mg)约为30‰,Δ((Mg/(Mg)约为59‰,Δ((Mg/(Mg)/Δ((Mg/(Mg)约为2;EK1-4-1的Δ((Mg/(Mg)约为20‰,Δ((Mg/(Mg)约37‰。C1和 EK1-4-1的Δ((Si/(Si)依次为12.5‰和7.5‰,Δ((Si/(Si)依次为23.5‰和12.5‰;EK1-4-1的Δ((Si/(Si)/Δ((Si/(Si)约为2。两个包体中的O、Mg和Si同位素成分均受核效应和分馏效应的影响,C1的分馏效应比EK1-4-1大,但核效应的影响比EK1-4-1小。
 ②钙、锶和钡 以地球、月球和陨石样品的平均比值(Ca/(Ca作归一化标准,扣除分馏效应后,对EK1-4-1,(Ca的过剩值为1.7‰,(Ca为14‰,(Ca/(Ca的值比地球值大0.72‰;C1包体的(Ca为-2.7‰。用(Sr/(Sr作归一化标准,EK1-4-1和C1的(Sr分别为-3.8‰和-1‰。表明此包体中可能存在 S过程中产生的原始(Sr过剩。选择S过程核素的比值(Ba/(Ba作归一化标准,EK1-4-1中(Ba和(Ba的过剩值分别为 1.3‰和 1.2‰。取(Ba和(Ba为地球丰度。C1仅(Ba显负异常,数值为-0.2‰。
 ③钕和钐 C1中(Nd)是正异常。钐(Sm)同位素(Sm过剩1.5‰。EK1-4-1的(Sm 过剩3.4‰,(Nd(Nd、(Nd、(Nd和(Nd的异常值分别为+2.89‰、-0.21‰、-2.2‰、-2.07‰和-3.84‰。
 其他元素可能存在的同位素异常 一些碳质球粒陨石中(/(C比值变化达9%,陨石中(N/(N比值变化达24%,但由于碳和氮仅有二种稳定同位素,难以区分质量分馏效应和核效应对其同位素比值的影响。在阿连德陨石的酸浸残渣中发现(S比地球值高0.1%。阿连德陨石中Te同位素组成显示很大异常,与Xe相似,具“V”型异常特征,被称为Te-X。一些陨石中(Hg/(Hg比值变化很大,从15%到22%。地球、陨石和月球物质的(U/(U=137.8,但在某些陨石中这个比值变化很大,从106.8到137.5。一些陨石中酸浸残渣(U/(U=40.2。
 陨石中原始同位素异常目前有如下几种解释:①由于来自原始太阳的高能粒子流对原始太阳系不同部位的照射不同所致;②在太阳系形成前几百万年邻近超新星爆炸产物的注入;③多个超新星爆炸产物的注入;④星际介质中不同成分的前太阳星云尘埃颗粒的不完全蒸发,这种成分可能起因于不同的区域(红巨星、行星星云、新星或超新星)。
 研究的意义 陨石中原始同位素异常的发现,对建立原始太阳星云模式和天体物理学问题有深远意义:它改变了太阳系物质同位素组成均一化概念,对阐明核合成理论有很大促进;太阳系的起源和演化理论将经受原始同位素异常观测结果的检验,同时也为探索太阳系物质来源,太阳系的形成、演化提供了新线索;原始同位素异常的发现也冲击着宇宙年代学计时法的一个基本原理,即所假定的太阳系物体都是由同一个同位素均一化物源演化而来,具有相同的原始同位素比值的概念;原始同位素异常还可作为一种示踪剂,去了解行星体形成的物源,不同行星体之间的成因联系和热演化等。
                 王先彬
以上就是网友分享的关于"陨石中原始同位素组成异常"的相关资料,希望对您有所帮助,感谢您对爱华网的支持!  

爱华网本文地址 » http://www.aihuau.com/a/337751/521560552974.html

更多阅读

混源天然气碳同位素计算公式推导 碳氧同位素

混源天然气碳同位素计算公式推导:文献中(如Jenden et al.,1993;高先志, 1997),混源天然气碳同位素计算一般用近似计算,但是并没给出具体的推导过程。特别的,高先志(1997)基于“质量守恒原则,两种不同碳同位素浓度的甲烷混合,混合前后甲烷碳同

负折射率超材料中电磁波传导 负折射率

负折射率超材料中电磁波传导摘要:人工结构材料显示出传统方法制备的材料所无法得到的电磁学特性。特别的,它们为创造负折射率介质,操控光路提供了一种可能途径。本报告简单介绍负折射率介质的电磁学特性,给出Pendry提出的理想透镜的原

干酪根碳同位素(δ13C)的影响因素及意义 干酪根显微组分分类

干酪根的δ13C值的影响因素及意义提要干酪根是指保存在沉积岩中无固定结构和组成的难溶于一般有机溶剂的有机质。干酪根的δ13C值的影响因素是多方面,主要有沉积岩的变质的作用,以及:①生物的演变;②气候的变化;③原始沉积及保存环境;④地

海沃勒陨石中六方晶系陨石钻石的成因 六方晶系陨石钻石价格

海沃勒陨石,1971年掉落在芬兰境内的富含碳的陨石。科研人员在用金刚石抛光这一块陨石时,发现其中存在比钻石还坚硬的碳晶体。这种超硬钻石或许不会戴到我们手上,但是却有助于科学家学会如何在实验室制造出更坚硬的钻石。钻石是由碳元素

碳纳米管的制备与应用 碳纳米管在饮用水处理中的应用

     有机磷酸盐是各种农药的重要组成部分,在农业生产中得到了广泛的应用。但是它很有可能污染到自然界的各种水源中,最终导致饮用水的污染。因为他们对神经系统有一定的毒性,这些材料有时被当作化学武器来使用。为了研究赛尔登纳

声明:《碳同位素负异常事件 陨石中原始同位素组成异常》为网友另一种模样分享!如侵犯到您的合法权益请联系我们删除