BP(Back Propagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。
bp神经网络_BP神经网络 -?神经网络
(WwW.aIhUaU.com]“人脑是如何工作的?”
“人类能否制作模拟人脑的人工神经元?”
BP神经网络
多少年以来,人们从医学、生物学、生理学、哲学、信息学、计算机科学、认知学、组织协同学等各个角度企图认识并解答上述问题。在寻找上述问题答案的研究过程中,逐渐形成了1个新兴的多学科交叉技术领域,称之为“神经网络”。神经网络的研究涉及众多学科领域,这些领域互相结合、相互渗透并相互推动。不同领域的科学家又从各自学科的兴趣与特色出发,提出不同的问题,从不同的角度进行研究。
心理学家和认知科学家研究神经网络的目的在于探索人脑加工、储存和搜索信息的机制,弄清人脑功能的机理,建立人类认知过程的微结构理论。
生物学、医学、脑科学专家试图通过神经网络的研究推动脑科学向定量、精确和理论化体系发展,同时也寄希望于临床医学的新突破;信息处理和计算机科学家研究这一问题的目的在于寻求新的途径以解决不能解决或解决起来有极大困难的大量问题,构造更加逼近人脑功能的新一代计算机。
bp神经网络_BP神经网络 -起源学说
人工神经元的研究起源于脑神经元学说。19世纪末,在生物、生理学领域,Waldeger等人创建了神经元学说。人们认识到复杂的神经系统是由数目繁多的神经元组合而成。大脑皮层包括有100亿个以上的神经元,每立方毫米约有数万个,它们互相联结形成神经网络,通过感觉器官和神经接受来自身体内外的各种信息,传递至中枢神经系统内,经过对信息的分析和综合,再通过运动神经发出控制信息,以此来实现机体与内外环境的联系,协调全身的各种机能活动。
神经元
BP神经网络
人工神经网络是由大量的简单基本元件——
神经元相互联接而成的自适应非线性动态系统。每个神经元的结构和功能比较简单,但大量神经元组合产生的系统行为却非常复杂。
人工神经网络反映了人脑功能的若干基本特性,但并非生物系统的逼真描述,只是某种模仿、简化和抽象。与数字计算机比较,人工神经网络在构成原理和功能特点等方面更加接近人脑,它不是按给定的程序1步1步地执行运算,而是能够自身适应环境、总结规律、完成某种运算、识别或过程控制。神经元也和其他类型的细胞一样,包括有细胞膜、细胞质和细胞核。但是神经细胞的形态比较特殊,具有许多突起,因此又分为细胞体、轴突和树突三部分。细胞体内有细胞核,突起的作用是传递信息。树突是作为引入输入信号的突起,而轴突是作为输出端的突起,它只有1个。
树突
树突是细胞体的延伸部分,它由细胞体发出后逐渐变细,全长各部位都可与其他神经元的轴突末梢相互联系,形成所谓“突触”。在突触处两神经元并未连通,它只是发生信息传递功能的结合部,联系界面之间间隙约为(15~50)×10米。突触可分为兴奋性与抑制性2种类型,它相应于神经元之间耦合的极性。每个神经元的突触数目正常,最高可达十个。各神经元之间的连接强度和极性有所不同,并且都可调整、基于这一特性,人脑具有存储信息的功能。利用大量神经元相互联接组成人工神经网络可显示出人的大脑的某些特征。下面通过人工神经网络与通用的计算机工作特点来对比一下:
速度比较
若从速度的角度出发,人脑神经元之间传递信息的速度要远低于计算机,前者为毫秒量级,而后者的频率往往可达几百兆赫。但是,由于人脑是1个大规模并行与串行组合处理系统,因而,在许多问题上可以作出快速判断、决策和处理,其速度则远高于串行结构的普通计算机。人工神经网络的基本结构模仿人脑,具有并行处理特征,可以大大提高工作速度。
利用突触效能的变化来调整存贮内容
人脑存贮信息的特点为利用突触效能的变化来调整存贮内容,也即信息存贮在神经元之间连接强度的分布上,存贮区与计算机区合为一体。虽然人脑每日有大量神经细胞死亡 (平均每小时约一千个),但不影响大脑的正常思维活动。
普通计算机是具有相互独立的存贮器和运算器,知识存贮与数据运算互不相关,只有通过人编出的程序使之沟通,这种沟通不能超越程序编制者的预想。元器件的局部损坏及程序中的微小错误都可能引起严重的失常。
人类大脑有很强的自适应与自组织特性,后天的学习与训练可以开发许多各具特色的活动功能。如盲人的听觉和触觉非常灵敏;聋哑人善于运用手势;训练有素的运动员可以表现出非凡的运动技巧等等。
普通计算机的功能取决于程序中给出的知识和能力。显然,对于智能活动要通过总结编制程序将十分困难。
bp神经网络_BP神经网络 -发展历史
人工神经网络早期的研究工作应追溯至上世纪40年代。下面以时间顺序,以著名的人物或某一方面突出的研究成果为线索,简要介绍人工神经网络的发展历史。
1943年,心理学家W·Mcculloch和数理逻辑学家W·Pitts在分析、总结神经元基本特性的基础上首先提出神经元的数学模型。此模型沿用至今,并且直接影响着这一领域研究的进展。因而,他们两人可称为人工神经网络研究的先驱。
1945年 冯·诺依曼领导的设计小组试制成功存储程序式电子计算机,标志着电子计算机时代的开始。1948年,他在研究工作中比较了人脑结构与存储程序式计算机的根本区别,提出了以简单神经元构成的再生自动机网络结构。但是,由于指令存储式计算机技术的发展非常迅速,迫使他放弃了神经网络研究的新途径,继续投身于指令存储式计算机技术的研究,并在此领域作出了巨大贡献。虽然,冯·诺依曼的名字是与普通计算机联系在一起的,但他也是人工神经网络研究的先驱之一。