1、如果两个四位数的差等于8921,那么就说这两个四位数组成一个数对,问这样的数对共有多少个?
分析:从两个极端来考虑这个问题: 最大为9999-1078=8921,最小为9921-1000=8921, 所以共有9999-9921+1=79个,或1078-1000+1=79个
2、一本书从第1页开始编排页码,共用数字2355个,那么这本书共有多少页?
分析:按数位分类: 一位数:1~9共用数字1*9=9个; 二位数:10~99共用数字2*90=180个;
三位数:100~999共用数字3*900=2700个, 所以所求页数不超过999页, 三位数共有:2355-9-180=2166,2166÷3=722个, 所以本书有722+99=821页。
3、用红蓝两色来涂图中的小圆圈,要求关于中间那条竖线对称,问共有多少种不同的涂法?
分析:按题意可知,1、4对称,2、3对称,这样1、2、A、B、C、D、E均有两种选择,2×2×2×2×2×2×2=128种。
4、在图中所示的阶梯形方格表的格子中放入5枚棋子,使得每行每列都只有1枚棋子,那么这样的放法有多少种?
分析:对于第1列必有1枚棋子,这有上下两行选择, 对于第2列必有1枚棋子,这有除第1枚外的两行选择, …… 对于第5枚棋子,只有唯一选择, 所以共有2×2×2×2×1=16种。
5、如果一个四位数与三位数的和是1999,并且四位数和三位数是由7个不同数字组成的,那么这样的四位数最多有多少个?
分析:按题意给出这样一个算式: 由于1已定,相应的8也就不能用, 对于D来说,有2、3、4、5、6、7、9共7种选择,每一种选择都有相应的A, 对于E来说,在剩下的数中有6种选择,每一种选择都有相应的B,
对于F来说,在剩下的数中有4种选择,每一种选择都有相应的C, 根据乘法原理,共有7×6×4=168种。