麻省沃尔瑟姆市(Waltham, Massachusetts)的一座钢筋混泥土建筑的二楼,一个实验室冰箱里的塑料盒中,包含着无数种化学分子。这些分子是葛兰素史克制药公司(GlaxoSmithKline,GSK)合成的带DNA标签的分子,数目达到万亿种——这是银河系恒星数目的10倍。
各大制药公司和生物工程公司都在采用这种DNA编码分子库来迅速筛选能与疾病相关蛋白结合的分子,尤其是能与那些目前难以靶向的蛋白结合的药物。这种筛选方法比传统筛药方式更迅速,更便宜。基础科学研究者也可以使用这种方法来探索基本生物学问题,研究酶、受体和细胞通路。

药物研发的起始步骤往往是:研究人员合成大量化学分子,然后测试这些分子对目标蛋白的结合作用。在多孔板的每个孔里加入目标蛋白,然后分别加入各种药物分子,检测这些分子对蛋白活力的影响。这种方法被称为高通量筛选(high-throughout screening,HTS),主要使用机器自动测试上百万种化学分子,但仍然耗时耗力还费钱,而且不一定凑效。
过去几年来,药物化学家通过用DNA标记化学分子,形成分子的二维码,从而提高药物研发成功率。这些DNA编码分子库具有诸多优点:首先,研究者并不需要单独测试每种分子;而是只需把分子分成各种混合物,然后检测混合物是否对目标蛋白活性有影响。一旦有分子能与目标蛋白结合,它就很容易被认出来——因为可以检测它的DNA二维码。
1992年斯克里普斯研究所(Scripps Research Institute)的分子生物学家Sydney Brenner 和化学家 Richard Lerner首次提出DNA编码分子库这一概念。此后,DNA编码分子库一直发展迅猛。2007年,GSK公司以5500万美金收购了一家在DNA标签分子库研究站处于领先地位的公司。瑞士巴塞尔的诺华公司和罗氏公司也建立了内部DNA标签分子库研究项目。多家新兴生物科技公司——包括沃尔瑟姆的X-chem、哥本哈根的Vipergen、剑桥的Ensemble制药公司和瑞士的Philochem——也和学界和工业界合作,迫切希望使用该技术。
“人们现在明白了,DNA编码分子库不是一种时尚,而是可以实现的。” 波士顿阿斯利康公司(X-Chem公司的合作者之一)化学创新中心的执行理事Robert Goodnow这样说到。
DNA编码分子库不会取代高通量筛选:由于一些化合物不能使用DNA编码技术合成,各大公司已在高通量筛选上投入巨资。但DNA编码分子库提供了一个快速有效、低成本的互补方案,帮助寻找与新的或具有挑战性的目标蛋白结合的分子。例如,寻找泛素连接酶——一种将泛素分子连接到目标蛋白的酶、可作为癌症治疗的靶向分子——的结合分子。
图:建立DNA二维码
大即是美
GSK目前拥有世界上最大的DNA编码分子库:GSK的高通量筛选库有200万种分子,而DNA编码分子库有1万亿种分子,是高通量筛选库的50万倍。