inspired by nature inspired by nature Multi-Verse Optimizer a nature-inspired algorithm for global_图

NeuralComput&Applic

DOI10.1007/s00521-015-1870-7

ORIGINALARTICLE

Multi-VerseOptimizer:anature-inspiredalgorithmforglobaloptimization

SeyedaliMirjalili?SeyedMohammadMirjalili?

AbdolrezaHatamlou

Received:6October2014/Accepted:22February2015óTheNaturalComputingApplicationsForum2015

AbstractThispaperproposesanovelnature-inspiredalgorithmcalledMulti-VerseOptimizer(MVO).Themaininspirationsofthisalgorithmarebasedonthreeconceptsincosmology:whitehole,blackhole,andwormhole.Themathematicalmodelsofthesethreeconceptsaredevelopedtoperformexploration,exploitation,andlocalsearch,re-spectively.TheMVOalgorithmis?rstbenchmarkedon19challengingtestproblems.Itisthenappliedto?verealengineeringproblemstofurthercon?rmitsperformance.Tovalidatetheresults,MVOiscomparedwithfourwell-knownalgorithms:GreyWolfOptimizer,ParticleSwarmOptimization,GeneticAlgorithm,andGravitationalSearchAlgorithm.Theresultsprovethattheproposedalgorithmisabletoprovideverycompetitiveresultsandoutperformsthebestalgorithmsintheliteratureonthemajorityofthetestbeds.Theresultsoftherealcasestudiesalso

ElectronicsupplementarymaterialTheonlineversionofthisarticle(doi:10.1007/s00521-015-1870-7)containssupplementarymaterial,whichisavailabletoauthorizedusers.

S.Mirjalili(&)

SchoolofInformationandCommunicationTechnology,Grif?thUniversity,NathanCampus,Brisbane,QLD4111,Australiae-mail:seyedali.mirjalili@grif?thuni.edu.auS.Mirjalili

QueenslandInstituteofBusinessandTechnology,MtGravatt,Brisbane,QLD4122,Australia

S.M.Mirjalili

ZharfaPajoheshSystem(ZPS)Co.,Unit5,NO.30,West208St.,ThirdSq.Tehranpars,P.O.Box1653745696,Tehran,IranA.Hatamlou

DepartmentofComputerScience,KhoyBranch,IslamicAzadUniversity,Khoy,Iran

demonstratethepotentialofMVOinsolvingrealproblemswithunknownsearchspaces.NotethatthesourcecodesoftheproposedMVOalgorithmarepubliclyavailableathttp://www.alimirjalili.com/MVO.html.

KeywordsOptimizationáMeta-heuristicáAlgorithmáBenchmarkáGeneticAlgorithmáParticleSwarmOptimizationáHeuristic

1Introduction

Naturehasbeenthemaininspirationforthemajorityofthepopulation-basedstochasticoptimizationtechniques.Asthenameofsuchtechniquesimplies,theyperformopti-mizationrandomly.Theoptimizationprocessisusuallystartedbycreatingasetofrandomsolutions.Theseinitialsolutionsarethencombined,moved,orevolvedoverapre-de?nednumberofstepscallediterationsorgenerations.Thisisalmostthemainframeworkofallpopulation-basedalgorithms.Whatmakesanalgorithmdifferentfromothersinthis?eldisthemechanismofcombining,moving,orevolvingthesolutionsduringoptimization.

Forinstance,GeneticAlgorithms(GAs)[1]utilizethesurvivalofthe?tterindividualsinnatureinordertoselectthebestsolutionsandthencombinethembasedonthereproductionofchromosomes.ParticleSwarmOptimiza-tion(PSO)[2]wasinspiredbysocialandindividualthinkingofbirdswhen?ying,soitobligesthecandidatesolutionstomovearoundasearchspacewithrespecttotheirownpersonalbestpositionobtainedsofaraswellasthebestpositionthattheswarmfoundsofar.GravitationalSearchAlgorithm(GSA)[3]usestheNewtonianlawsofmotioninordertomoveitssearchagentstowardsthepromisingregionsofasearch

space.

123

Anothercommonconceptsamongdifferentpopulation-basedalgorithmsareexplorationandexploitation.Theformerreferstothephasethatanalgorithmtriestodis-coverdifferentpromisingregionsofasearchspaceglob-ally.Generallyspeaking,abruptchangesincandidatesolutionsarefruitfulatthisstage.Incontrary,thelatterconceptistheconvergenceabilityanalgorithmaroundtheobtainedpromisingsolutionsintheexplorationphase.Aproperbalancebetweenexplorationandexploitationcanguaranteeproceedingtowardstheglobaloptimum.

Recently,therehasbeenagrowinginterestinproposingnewalgorithmsorimprovingthecurrentonesinthis?eld.Asigni?cantnumberofpracticalapplicationsalsoac-companiesthetheoreticalworks.Thereasonofthisre-markablepopularitymightbeoriginatedfromtheso-calledNoFreeLunch(NFL)theoremforoptimization[4].Thistheoremhasbeenprovedlogicallythatthereisnoopti-mizationtechniqueforsolvingalloptimizationproblems.TheNFLtheorem,obviously,makesthisareaofresearchopen,inwhichresearchersareallowedtoimprove/adaptthecurrentalgorithmsforsolvingdifferentproblemsorproposenewalgorithmsforprovidingcompetitiveresultscomparedtothecurrentalgorithms.

Inthiswork,anovelstochasticpopulation-basedalgo-rithmisproposedcalledMulti-VerseOptimizer(MVO).Asitsnameimplies,MVOisinspiredbythetheoryofmulti-verseinphysics.Threemainconceptsofthemulti-versetheory(whitehole,blackhole,andwormhole)aremathematicallymodelledtoconstructtheMVO.Therestofthepaperisorganizedasfollows.

Section2providestheliteraturereviewofthestochasticoptimizationtechniques.Section3discussestheconceptsofmulti-versetheoryandproposestheMVOalgorithm.ThetestbedsandresultsaredemonstratedinSect.4.TherealengineeringproblemsaresolvedanddiscussedattheendofSect.4aswell.Eventually,Sect.5concludestheworkandsuggestssomedirectionsforfuturestudies.

2Relatedworks

Generallyspeaking,stochasticoptimizationtechniquescanbedividedintotwomaincategories:single-solution-basedversuspopulation-based.Theformerclassofalgorithmsstartstheoptimizationprocesswithasinglerandomsolu-tionandimprovesitoverapre-de?nednumberofgen-erations.Simulateannealing(SA)[5],localsearches[6,7],andhillclimbing[8]belongtothisclassofalgorithms.Theadvantagesofsingle-solution-basedalgorithmsare:sim-plicityandlownumberoffunctionevaluation.However,themaindisadvantageisthehighprobabilityofentrapmentinlocaloptima.Inaddition,sinceateveryrunasinglesolutionisinvolved,thereisnoinformationsharing,and

123

NeuralComput&Applic

thealgorithmshoulddealwithlotsofissuessuchaslocaloptima,isolationofoptima,deceptiveness,biasofthesearchspace,andprematureconvergencewithonlyonecandidatesolution.

Incontrasttosingle-solution-basedalgorithms,popula-tion-basedalgorithmsinitiatetheoptimizationprocesswithasetofrandomsolutionsandimprovethemoverthecourseofiterations.Thissetofsolutionsissometimescalledcandidatesolutions’set.PSO,GA,AntColonyOptimiza-tion(ACO)[9,10],Arti?cialBeeColonies(ABC)[11],andGSA[11]aresomeofthemostpopularalgorithmsinthisclass.Themainadvantageofthepopulation-basedalgorithmsisthattherecanbeinformationexchangebe-tweenthecandidatesolutions.Therefore,theycanhandletheissuessuchaslocaloptima,isolationofoptima,de-ceptiveness,biasofthesearchspace,andprematurecon-vergenceeasierandfaster.Anotheradvantageisthelessprobabilityofentrapmentinlocalsolutionscomparedtothesingle-solution-basedalgorithms.Thedisadvantagesofthesealgorithmsare:lesssimplicityandtheneedforhighnumberoffunctionevaluationateachiteration.

Theliteratureshowsthatthepopulation-basedalgo-rithmshavebecomeareliablealternativetosingle-solu-tion-basedalgorithmsduetotheabove-mentionedadvantages.Theapplicationofthesemethodscanalsobefoundinawiderangeof?elds,emphasizingthemeritsofthesetechniques.Generallyspeaking,thedesignprocessofanalgorithmstartswithaninspiration.Theinspirationcouldbefrombehaviourofcreatures,naturalphenomena,orsocialevents.Aftertheinspiration,differentpotentialmathematicalmodelsaregeneratedtodesignthealgo-rithm.Thebestcombinationofmathematicalmodelsisthenfoundbyconductingexperimentsonvarioustestbeds.Theoperatorsofalgorithmsinthis?eldareusuallyde-signedtoaccomplishtwophases:explorationversusex-ploitation.Intheformerphase,analgorithmshouldbeequippedwithmechanismstosearchthesearchspaceasextensivelyaspossible.Infact,promisingregionsofthesearchspaceareidenti?edinthisphase.Intheexploitationphase,however,thereshouldbeemphasizesonlocalsearchandconvergencetowardspromisingareasobtainedintheexplorationphase.Explorationandexploitationaretwocon?ictingstageswithnospeci?cmathematicalde?nition.Theexplorationphaseusuallycomesbeforeexploitation,butthereisaneedtore-explorethesearchspaceincaseoflocaloptimastagnation,whichisquitecommoninrealproblemswithunknownsearchspaces.

Anotherchallengewhendesigninganalgorithmisthetransitionbetweenexplorationandexploitation.Thereisnoclearruleforanalgorithmtorealizethemostsuitabletimefortransitingfromexplorationtoexplorationduetobothunknownshapeofsearchspacesandstochasticnatureofpopulation-basedalgorithms.Themajorityofpopulation-

NeuralComput&Applic

basedalgorithmshavebeentunedadaptivelytosmoothlytransitbetweenexplorationandexploitation.Forinstance,theinertiaweightinPSOismostlydecreasedlinearlyfrom0.9to0.4inordertoreducetheimpactsofvelocityvectorsonparticlemovementsandemphasizeexploitationasit-erationsincrease.

Theaboveparagraphsshowthechallengesthatade-signerencounterswhendevelopinganewmeta-heuristic.Thefollowingsectionproposesanovelmeta-heuristicbasedontheconceptsofmulti-versetheory.

3Multi-VerseOptimizer3.1Inspiration

Thebigbangtheory[12]discussesthatouruniversestartswithamassiveexplosion.Accordingtothistheory,thebigbangistheoriginofeverythinginthisworld,andtherewasnothingbeforethat.Multi-versetheoryisanotherrecentandwell-knowntheorybetweenphysicists[13].Itisbe-lievedinthistheorythattherearemorethanonebigbangandeachbigbangcausesthebirthofauniverse.Thetermmulti-versestandsoppositeofuniverse,whichreferstotheexistenceofotheruniversesinadditiontotheuniversethatweallarelivingin[13].Multipleuniversesinteractandmightevencollidewitheachotherinthemulti-versethe-ory.Themulti-versetheoryalsosuggeststhattheremightbedifferentphysicallawsineachoftheuniverses.

Wechosethreemainconceptsofthemulti-versetheoryastheinspirationfortheMVOalgorithm:whiteholes,blackholes,andwormholes.Awhiteholehasneverseeninouruniverse,butphysiciststhinkthatthebigbangcanbeconsideredasawhiteholeandmaybethemaincomponentforthebirthofauniverse[14].Itisalsoarguedinthecyclicmodelofmulti-versetheory[15]thatbigbangs/whiteholesarecreatedwherethecollisionsbetweenpar-alleluniversesoccur.Blackholes,whichhavebeenob-servedfrequently,behavecompletelyincontrasttowhite

wholes.Theyattracteverythingincludinglightbeamswiththeirextremelyhighgravitationalforce[16].Wormholesarethoseholesthatconnectdifferentpartsofauniversetogether.Thewormholesinthemulti-versetheoryactastime/spacetraveltunnelswhereobjectsareabletotravelinstantlybetweenanycornersofauniverse(orevenfromoneuniversetoanother)[17].Conceptualmodelsofthesethreekeycomponentsofthemulti-versetheoryareillus-tratedinFig.1.

Everyuniversehasanin?ationrate(eternalin?ation)thatcausesitsexpansionthroughspace[18].In?ationspeedofauniverseisveryimportantintermsofformingstars,planets,asteroids,blackholes,whiteholes,worm-holes,physicallaws,andsuitabilityforlife.Itisarguedinoneofthecyclicmulti-versemodels[19]thatmultipleuniversesinteractviawhite,black,andwormholestoreachastablesituation.ThisistheexactinspirationoftheMVOalgorithm,whichisconceptuallyandmathematicallymodelledinthefollowingsubsection.3.2MVOalgorithm

Asdiscussedintheprecedingsection,apopulation-basedalgorithmdividesthesearchprocessintotwophases:ex-plorationversusexploitation.WeutilizetheconceptsofwhiteholeandblackholeinordertoexploresearchspacesbyMVO.Incontrast,thewormholesassistMVOinex-ploitingthesearchspaces.Weassumethateachsolutionisanalogoustoauniverseandeachvariableinthesolutionisanobjectinthatuniverse.Inaddition,weassigneachsolutionanin?ationrate,whichisproportionaltothecor-responding?tnessfunctionvalueofthesolution.Wealsousethetermtimeinsteadoftheiterationinthispapersinceitisacommonterminmulti-versetheoryandcosmology.Duringoptimization,thefollowingrulesareappliedtotheuniversesofMVO:1.

Thehigherin?ationrate,thehigherprobabilityofhavingwhite

hole.

Fig.1Whitehole,blackhole,andwormhole

123

NeuralComput&Applic

2.3.4.5.

Thehigherin?ationrate,thelowerprobabilityofhavingblackholes.

Universeswithhigherin?ationratetendtosendobjectsthroughwhiteholes.

Universeswithlowerin?ationratetendtoreceivemoreobjectsthroughblackholes.

Theobjectsinalluniversesmayfacerandommove-menttowardsthebestuniverseviawormholesregard-lessofthein?ationrate.

universesbasedoftheirin?ationratesandchoseoneofthembytheroulettewheeltohaveawhitehole.Thefol-lowingstepsaredoneinordertodothis.Assumethat2123x1x1...xd1

2d76x1x...x27622

U?6.7......4..5...

inspired by nature inspired by nature Multi-Verse Optimizer a nature-inspired algorithm for global_图

x1n

x2n

...xdn

wheredisthenumberofparameters(variables)andnisthenumberofuniverses(candidatesolutions):

&j

xkr1NIeUiTj

xi?e3:1T

xijr1!NIeUiTwherexijindicatesthejthparameterofithuniverse,Uishowstheithuniverse,NI(Ui)isnormalizedin?ationrateoftheithuniverse,r1isarandomnumberin[0,1],andxkjindicatesthejthparameterofkthuniverseselectedbyaroulettewheelselectionmechanism.

Thepseudocodesforthispartareasfollows:

SU=Sorteduniverses

NI=Normalize inflation rate (fitness) of the universesforeach universe indexed by i

Black_hole_index=i;

foreach objectindexedby j

r1=random([0,1]);ifr1<NI(Ui)

White_hole_index=RouletteWheelSelection(-NI);U(Black_hole_index,j)=SU(White_hole_index,j);

end if

end for

end for

Theconceptualmodeloftheproposedalgorithmisillus-tratedinFig.2.

This?gureshowsthattheobjectsareallowedtomovebetweendifferentuniversesthroughwhite/blackholetun-nels.Whenawhite/blacktunnelisestablishedbetweentwouniverses,theuniversewithhigherin?ationrateiscon-sideredtohavewhitehole,whereastheuniversewithlessin?ationrateisassumedtoownblackholes.Theobjectsarethentransferredfromthewhiteholesofthesourceuniversetoblackholesofthedestinationuniverse.Thismechanismallowstheuniversestoeasilyexchangeobjects.Inordertoimprovethewholein?ationrateoftheuni-verses,weassumethattheuniverseswithhighin?ationratesarehighlyprobabletohavewhiteholes.Incontrary,theuniverseswithlowin?ationrateshaveahighprob-abilityofhavingblackholes.Therefore,thereisalwayshighpossibilitytomoveobjectsfromauniversewithhighin?ationratetoauniversewithlowin?ationrate.Thiscanguaranteetheimprovementoftheaveragein?ationratesofthewholeuniversesovertheiterations.

Inordertomathematicallymodelthewhite/blackholetunnelsandexchangetheobjectsofuniverses,weutilizedaroulettewheelmechanism.Ateveryiteration,wesortthe

123


百度搜索“爱华网”,专业资料、生活学习,尽在爱华网!  

爱华网本文地址 » http://www.aihuau.com/a/359651/305352927586.html

更多阅读

怎样测试自己的脸型 脸型分类图

怎样测试自己的脸型——简介有些人对自己的脸型一直不清楚,所以,想判断出自己的脸型,那么你要如何判断你的脸型呢。好吧,告诉你一种简单的办法哦,完全是自己动手的。怎样测试自己的脸型——方法/步骤怎样测试自己的脸型 1、打开百度,然后

怎么用电脑截图 如何用电脑截图

怎么用电脑截图——简介电脑截图可以用到很多种,那这里我给大家讲一些经常用得到的截图方法:1、print键截图。2、QQ截图。3、搜狗截图。为什么介绍这三种,因为这个都是时常用得到,也不用在去下载一些什么软件之类的。方法1,在键盘上可以

仰卧起坐正确做法图 仰卧起坐健身器械

仰卧起坐正确做法图——简介仰卧起坐人人都会,但未见得人人都能做得正确,下面小编就爱教给大家正确的做法。 仰卧起坐正确做法图——方法/步骤仰卧起坐正确做法图 1、双腿屈膝,躺卧于地

声明:《inspired by nature inspired by nature Multi-Verse Optimizer a nature-inspired algorithm for global_图》为网友散不尽过往分享!如侵犯到您的合法权益请联系我们删除