【分析1】先求卖出的苹果是多少千克,再乘以2即得原来苹果重量.
【解法1】卖出的苹果有多少千克?
45-24=21(千克)
原来有苹果多少千克?
21×2=42(千克)
综合算式:(45-24)×2=42(千克).
【分析 2】用24千克乘以 2,即得两个筐和原来苹果总数的重量和.再减去连筐在内的45千克,即得一个筐的重量,再用45千克减去一个筐的重量,即得原有苹果重量.
【解法2】两个筐和原来苹果共多少?
24×2=48(千克)
一个筐的重量是多少千克?
48-45=3(千克)
原来有苹果多少千克?
45-3=42(千克)
综合算式: 45-(24×2-45)=42(千克).
【分析3】先求两个筐和两筐苹果的重量和,再求出两个筐和一筐苹果的重量和,最后求两和之差就是原来有苹果多少千克.
【解法3】两个筐和两筐苹果共多少?
45×2=90(千克)
两个筐和一筐苹果共重多少千克?
24×2=48(千克)
原来有苹果多少千克?
90-48=42(千克)
综合算式: 45×2-24×2=42(千克).
【分析4】先求出半个筐和半筐苹果的重量和,再求半个筐重多少千克,进一步求出一个筐的重量,最后求出原有苹果多少千克.
【解法4】半个筐和半筐苹果共多少?
45÷2=22.5(千克)
半个筐重多少千克?
24-22.5=1.5(千克)
一个筐重多少千克?
1.5×2=3(千克)
原有苹果多少千克?
45-3=42(千克)
综合算式: 45-(24-45÷2)×2
=45-(24-22.5)×2=45-1.5×2
=45-3=42(千克).
【分析5】 “苹果的一半”可理解为“苹果的”.根据“比较量÷对应分率=标准量”,先求出“苹果的一半”是多少,再除以“”即得原有苹果多少千克.
【解法5】苹果的一半是多少千克?
45-24=21(千克)
原来有苹果多少千克?
21÷=21×=42(克)
综合算式:(45-24)÷=21÷=42(克)
答:原来有苹果42(千克).
【评注】 以上五种解法中,解法1和解法5实际上是很相似的,只是形式不同,解法1是整数应用题的解法,而解法5是分数应用题的解法.这两种解法的思路简捷,计算简便,是本题较好的解法.解法5可通用于其他变换形式,如“卖出苹果的”等,若用解法1就太麻烦了.
例2 朝阳菜市场运进每筐重量相等的西红柿.上午运进120筐,下午运进150筐,已知上午比下午少运900千克,全天共运进西红柿多少千克?
【分析1】先求下午比上午多运进多少筐,进一步求出每筐重量,再乘以全天共运进的筐数,即得全天共运进西红柿多少千克.
【解法1】下午比上午多运进多少筐?
150-120=30(筐)
每筐西红柿重多少千克?
900÷30=30(千克)
全天共运进多少筐西红柿?
120+150=270(筐)
全天共运进西红柿多少千克?
30×270=8100(千克)
综合算式:900÷(150-120)×(120+150)
=900÷30×270
=30×270
=8100(千克).
【分析2】先求每筐西红柿重多少千克,再求上午和下午各运进多少千克,最后求出全天共运进西红柿多少千克.
【解法2】每筐西红柿重多少千克?
900÷(150-120)=900÷30=30(千克)
上午运进西红柿多少千克?
30×120=3600(千克)
下午运进西红柿多少千克?
30×150=4500(千克)
全天共运进西红柿多少千克?
3600+4500=8100(千克)
综合算式: 900÷(150-120)×120+900÷(150- 120)×150
=900÷30×120+900÷30×150
=3600+4500
=8100(千克).
【分析3】先求出下午运进的筐数是上午的几倍,再求出下午比上午多的倍数,即900千克对应的倍数,由此可求上午运进西红柿多少千克,最后求全天共运进西红柿多少千克.
【解法3】下午运的是上午运的几倍?
150÷120=(倍)
上午运进西红柿多少千克?
900÷(-1)=3600(千克)
全天运进西红柿多少千克?
3600×(+1)=8100(千克)
综合算式: 900÷(150÷120-1)×(150÷120+1)
=900÷(-1)×
=900×
=8100(千克).
【分析4】先求下午与上午运进西红柿筐数的比,再求每份西红柿的重量是多少千克,最后求出全天运进西红柿多少千克.
【解法4】下午与上午运进筐数的比?
150∶120=5∶4
每份西红柿的重量是多少千克?
900÷(5-4)=900(千克)
全天运进西红柿多少千克?
900×( 5+4)=8100 (千克)
答:全天共运进西红柿8100千克.
【评注】以上四种解法中,解法1思路简捷,计算简便,是本题较好的解法.解法3和解法4分别运用有关分数和比的知识解题,思路独特,有新意.
例3 一个农业专业户买种子用去10.50元,买农具的钱是买种子的3.4倍,买化肥比买农具少11.90元,他一共用去多少元?
【分析1】先求买农具用去多少元,再求买化肥用去多少元,最后求出他共用多少元.
【解法1】买农具用去多少元?
10.50×3.4=35.70(元)
买化肥用去多少元?
35.70-11.90=23.80(元)
一共用去多少元?
10.50+35.70+23.80=70(元)
综合算式: 10.50+10.50×3.4+(10.50 ×3.4-11.90)
=10.50+10.50×3.4+23.80
=70(元).
【分析2】先求出买农具和买化肥共用去多少元,再求他一共用去多少元.
【解法2】买农具和化肥共用多少元?
10.50×3.4×2-11.90=59.50(元)
他一共用去多少元?
10.50+59.50=70(元)
综合算式: 10.50+(10.50×3.4×2-11.90)
=10.50+(71.40-11.90)
=10.50+59.50=70(元).
【分析3】因为买农具用去的钱是买种子用钱的3.4倍,而买化肥用钱可看作是买种子用钱的3.4倍少11.90元,所以他一共用去的钱是买种子用钱的(1+3.4×2)倍少11.90元.
【解法3】 10.50×(1+3.4×2)-11.90
=10.50×7.8-11.90=81.90-11.90
=70(元).
答:他一共用去70元.
【评注】解法 1是一般解法,计算比较麻烦.解法 3思路简捷,运算简便,是本题的最佳解法.
例4 师徒二人装订324本书,4小时完成,已知师傅每小时装订45本,徒弟每小时装订多少本?
【分析1】先求师傅共装订多少本,再求徒弟共装订多少本,最后求徒弟每小时装订多少本.
【解法1】师傅共装订多少本?
45×4=180(本)
徒弟共装订了多少本?
324-180=144(本)
徒弟每小时装订多少本?
144÷4=36(本)
综合算式: (324-45×4)÷4
=(324-180)÷4=144÷4=36(本).
【分析2】先求出师徒二人每小时共装订多少本,再减去师傅每小时装订本数,即得徒弟每小时装订多少本.
【解法2】师徒每小时共装订多少本?
324÷4=81(本)
徒弟每小时装订多少本?
81-45=36(本)
综合算式:324÷4-45=81-45=36(本).
【分析3】因为师徒二人每小时装订本数×装订小时数=装订总本数,所以,可以“装订总本数”为等量列方程.
【解法3】设徒弟每小时装订x本.
(45+x)×4=324
45+x=324÷4
x=81-45
x=36
答:徒弟每小时装订36本.
【评注】解法1是一般解法,解法2思路明确,运算过程简单,是本题最佳解法.
例5 时新手表厂原计划25天生产10 000只手表,实际提前5天完成了计划,平均每天多生产手表多少只?
【分析1】先求实际生产了多少天,再分别求出实际和原计划每天生产手表各多少只,最后求出实际每天比原计划每天多生产手表多少只.
【解法1】实际生产了多少天?
25-5=20(天)
实际平均每天生产手表多少只?
10 000÷20=500(只)
原计划平均每天生产手表多少只?
10 000÷25=400(只)
实际平均每天比原计划多生产多少只?
500-400=100(只)
综合算式: 10 000÷(25- 5)- 10 000÷25
=10 000÷20-10 000÷25
=500-400=100(只).
【分析2】 由题意可知,实际每天生产手表总数的,原计划每天生产手表总数的.由此可分别求出实际和原计划每天各生产手表多少只,最后求其差,即得本题所求问题.
【解法2】实际生产了多少天?
25-5=20(天)
实际平均每天生产手表多少只?
10000×=500(只)
原计划平均每天生产手表多少只?
10000×=400(只)
实际平均每天比原计划多生产多少只?
500-400=100(只)
综合算式: 10000×-10000×
=10000×-10000×
=500-400=100
例6 某化肥厂生产一批化肥,原计划每天生产60吨,实际每天比原计划多生产15吨,结果提前6天完成了任务.这批化肥有多少吨?
【分析1】如果完成任务后继续生产 6天,就在原计划天数内超过计划总数(60+15)×6=450 吨).这是因为实际每天比原计划每天多生产15吨,由此可求出原计划生产天数,再求出这批化肥有多少吨.
【解法1】实际再生产6天完成几吨?
(60+15)×6=450(吨)
原计划生产多少天?
450÷15=30(天)
这批化肥有多少吨?
60×30=1800(吨)
综合算式: 60×[(60+15)×6÷15]
=60×[75×6÷15]=60×[450÷15]
=60×30=1800(吨)
【分析2】原计划生产每吨化肥要用天,实际生产每吨化肥要用天,由此可求出实际生产每吨化肥可提前-=(天).而实际共提前了6天,所以提前的6天里包含天的个数,就是原计划生产化肥的总吨数.
【解法2】实际生产每吨化肥比计划提前几天?
-=-=(天)
这批化肥有多少吨?
6÷=1800(吨)
综合算式: 6÷(-)
=6÷(-)=6÷=1 800(吨).
【分析3】因为每天生产吨数×生产的天数=化肥总吨数,而化肥总吨数一定,所以每天生产吨数和生产的天数成反比例.因为实际每天生产吨数与原计划每天生产吨数的比是 (60+15)∶60=5∶4,所以实际生产天数与原计划生产天数的比是4∶5,并且实际比原计划少用了6天,由此可求出实际生产天数,或原计划生产天数,那么这批化肥总量即可求出.
【解法3】实际与原计划生产天数的比?
60∶(60+15)=4∶5
实际生产了多少天?
6÷(5-4)×4=24(天)
计划生产多少天?
6÷(5-4)×5=30(天)
这批化肥有多少吨?
60×30=1800(吨)或(60+15)×24
=1800(吨)
综合算式: 60×[6÷(1-)]
=60×[6÷]=60×30=1800(吨).
或: (60+15)×[6÷(-1)]
=75×[6÷]=75×24=1800(吨).
【分析4】如果设这批化肥总吨数为x,那么原计划生产天数可表示为,实际生产的天数可表示为.因为实际比原计划少用了6天,所以根据关系式“原计划生产天数-实际生产天数=提前的天数”可列方程解.
【解法4】设这批化肥有x吨.
-=6
()x=6
x=6÷
x=1800
答:这批化肥有1800吨.
【评注】解法2的思路简明、新颖独特,运算简便,是本题的最佳解法.解法1比较容易想到,但运算太繁.解法3和解法4是运用比、分数和方程的知识解应用题,可作为拓宽解题思路的训练.
例7 管道工厂用10米长的新管,换地下8米长的旧管450根,需要新管多少根?
【分析1】先求要换旧管的总长是多少米,再求需要新管多少根.
【解法1】要换旧管的总长是多少米?
8×450=3600(米)
需要新管多少根?
3600÷10=360(根)
综合算式:8×450÷10=360(根).
【分析2】用比例解法.因为每根管长×管的根数=换管的总长,要换管的总长一定,所以,每根管的长度和管的根数成反比例.
【解法2】设需要新管x根.
10x=8×450
x=
x=360
【分析3】由分析2可知,每根管长和需换管的根数成反比例,所以,需要新管根数和旧管根数的比是8∶10,由此可求新管根数.
【解法3】450÷10×8=45×8=360(根).
答:需要新管360根.
【评注】解法1和解法2都属于一般解法,解法3是特殊解法,是本题较好的解法.
例8 农具厂加工一批零件,计划每天加工50个,12天完成.要想提前2天完成任务,每天需要加工多少个?
(山东省惠民地区)
【分析1】先求要加工零件总个数,再求实际用的天数,最后求每天要加工的个数.
【解法1】这批零件共有多少个?
50×12=600(个)
实际用了多少天?
12-2=10(天)
实际每天需要加工多少个?
600÷10=60(个)
综合算式: 50×12÷(12-2)
=600÷10=60(个).
【分析2】要提前2天完成,实际上就是把计划 2天完成的个数,平均分到前(12-2)天内完成。由此可先求实际每天多加工多少个,再求实际每天加工的个数.
【解法2】原计划2天可加工多少个?
50×2=100(个)
实际加工多少天?
12-2=10(天)
实际每天要多加工多少个?
100÷10=10(个)
实际每天要加工多少个?
50+10=60(个)
综合算式: 50×2÷(12-2)+50
=100÷10+50=10+50=60(个).
【分析3】用分数应用题解法.原计划每天可加工总数的,它与50相对应.由此运用分数除法可求出总个数,而每天实际加工总数的,所以再运用分数乘法,即可求出实际每天加工个数.
【解法3】这批零件共有多少个?
50÷=600(个)
实际每天加工多少个?
600×=60(个)
综合算式: 50÷×
=600×=60(个)·
【分析4】用比例解法。因为“每天加工个数×加工天数=零件总数”,而零件总数一定,所以,每天加工个数和加工的天数成反比例.
【解法4】设实际每天加工x个.
(12-2)x=50×12
x=
x=60
【分析5】用比例解法.按工程问题来理解,原计划的工作效率是,实际工作效率是.而原计划和实际工作效率的比,等于原计划和实际每天加工个数的比,由此列出比例式.
【解法5】设实际每天要加工x个.
50∶x=∶
50∶x=5∶6
x=
x=60
答:每天需要加工60个.
【评注】解法1和解法4分别是算术解法和比例解法,思路简单,容易想到,是常用解法.解法2和解法5是特殊解法,有利于今后复杂应用题的学习,解法3的思路与解法1基本相同,只是形式不同,这种解法有利于转换角度思考问题.
例9 一个修路队计划每天修路25米,实际每天修的是原计划修的2倍,现在5天修的路,原计划要用几天修完?
【分析1】先求出实际每天修多少米,再求实际5天能修多少米,最后求原计划要用多少天修完.
【解法1】实际每天修多少米?
25×2=50 (米)
实际5天能修多少米?
50×5=250(米)
原计划要用多少天?
250÷25=10(天)
综合算式: 25×2×5÷25
=250÷25=10(天)
【分析2】用比例解法。因为每天修路米数×修路天数=现在5天的修路长,而现在5天的修路长一定,所以每天修路米数和修路天数成反比例.
【解法2】设原计划要用x天完.
25x=(25×2)×5
x=
x=10
【分析3】因为实际每天修路长是原计划每天修路的2倍,所以,原计划每天修路长可理解为“1”,实际每天修路长可理解为“2”.由分析2可知,每天修路长和修路天数成反比例,由此可列方程解.
【解法3】设原计划要x天修完.
1×x=2×5
x=10
【分析4】由分析2可知,每天修路长和修路天数成反比例,而实际每天修路长是原计划每天修路长的2倍,所以,原计划修路天数是实际修路天数的2倍.由此本题可解.
【解法4】5×2=10(天).
答:原计划要用10天修完.
【评注】解法1是一般解法,学生容易想到,但思路曲折,计算较繁,解法2、3、4,恰是由繁到简的系列解法.其中解法4思路简明灵活,计算简便,是本题最佳解法.
例10 一个服装厂原来做一种儿童服装,每套用布2.2米,现在改进了剪裁方法,每套节省布0.2米,原来做600套这种服装所用的布,现在可以做多少套?
【分析1】先求出原来做600套服装要用布多少米,再求出现在每套用布多少米,将用布总米数除以现在每套用布米数,即得现在可做多少套.
【解法1】原来600套服装用布多少米?
2.2×600=1320(米)
现在每套服装用布多少米?
2.2-0.2=2(米)
现在可以做多少套?
1320÷2=660(套)
综合算式: 2.2×600÷(2.2-0.2)
=2.2×600÷2=1320÷2=660(套).
【分析2】先求出原来600套服装用新剪裁法可节省布多少米,再求出节省下来的布用新剪裁法可做多少套,再加上原来的600套,即得现在可以做多少套.
【解法2】原来600套用新法省布多少米?
0.2×600=120(米)
节省的布用新裁法可做多少套?
120÷(2.2-0.2)=120÷2=60(套)
现在可以做多少套?
600+60=660(套)
综合算式: 0.2×600÷(2.2-0.2)+600
=0.2×600÷2+600=120÷2+600
=60+600=660(套).
【分析3】先求原来每套用的布采用新裁法可做多少套,即原来的每套用布折合成现在几套的用布.再用它乘以原来的套数,即得现在可以做多少套.
【解法3】原来每套相当于现在的几套?
2.2÷(2.2-0.2)=2.2÷2=1.1(套)
现在可以做多少套?
1.1×600=660(套)
综合算式: 2.2÷(2.2-0.2)×600
=2.2÷2×600
=1.1×600=660(套).
【分析4】因为每套用布米数×服装套数=用布总米数,用布的总米数一定,所以每套服装用布米数与服装套数成反比例.
【解法4】设现在可以做x套.
(2.2-0.2)x=2.2×600
2x=1320
x=1320÷2
x=660
【分析5】由分析4可知,每套服装用布米数和可做服装套数成反比例,所以原来每套用布和现在每套用布的比,等于现在可做套数和原来可做套数的比.由此可先求出原来每套用布和现在的比,再求现在可做多少套.
【解法5】原来和现在每套用布的比?
2.2∶(2.2-0.2)=2.2∶2=11∶10
现在可以做多少套?
600÷10×11=60×11=660(套)
综合算式:600×=600×=660(套).
答:现在可以做660套.
【评注】解法1和解法2的解题思路比较明显,容易想到和理解,但运算较繁.解法3和解法5的运算简单,思路简单,是本题的较好解法.