visible light c3n4 8.Preparation of visible light-driven g-C3N4@ZnO_图文

导读:爱华网网友为您分享以下“8.Preparation of visible light-driven g-C3N4@ZnO_图文”的资讯,希望对您有所帮助,感谢您对aIhUaU.com的支持!

PCCP

Published on 16 July 2014. Downloaded by Sichuan University on 08/06/2015 09:33:14.

Citethis:Phys.Chem.Chem.Phys.,2014,16,17627

Preparationofvisiblelight-driveng-C3N4@ZnOhybridphotocatalystviamechanochemistry?

JianweiZhou,abMoZhangbandYongfaZhu*b

C3N4@ZnOhybridmaterialswithvisiblelightphotocatalyticperformancehavebeenpreparedbyfacilemechanicalmilling.Thedispersionofconjugatedmoleculeg-C3N4onthesurfaceofZnOimprovedduringmechanicalprocess,andthemultilayerhybridstructureofg-C3N4@ZnOmaterialswithremarkablevisiblelightphotocatalyticactivitywasformedbyballmilling.Thephotocatalyticactivityandphotocurrentintensityofg-C3N4@ZnOundervisiblelightirradiationwas3.0and2.0timeshigherthanthoseofpureC3N4,respectively.Thegreatenhancementofvisiblelightresponseoriginatesfromthe

Received12thMay2014,Accepted2ndJuly2014DOI:10.1039/c4cp02061h

www.rsc.org/pccp

increaseofseparationandimmigratione?ciencyofphotogeneratedelectron–holepairs.Furthermore,asynergisticphotocatalysismechanismbetweenZnOandg-C3N4wasproposed.TheenhancedvisiblelightphotocatalyticpropertiesoriginatefromtheinjectionofexcitedelectronsfromtheLUMOofC3N4totheCBofZnO.However,thephotocatalyticactivityofthephotocatalystismuchlowerthanthatofZnOunderUVlight,whichiscausedbythelatticedefectofZnOformedduringmilling.

Introduction

Photocatalysistechnologyiswidelyusedforthedegradationoforganicpollutants.Thedevelopmentofnovelmaterials,whicharenon-toxic,lowincostandwithlong-termstabilityhasattractedgreatattention.Zincoxide(ZnO),animportant,inexpensivesemi-conductorwithawidebandgapof3.37eVandhighoxidationcapability,hasbeenproventoexhibithigherphotocatalyticactivitythanTiO2insomeconditions.1–4However,thephotocorrosionofZnOmaterialswasfoundtobesevereduringthereactionbytheactionofthephotogeneratedholes,whichmayaffectthestabilityandphotocatalyticactivityofZnO.5–10Inaddition,itsapplicationisalsolimitedbythelowquantumefficiencyandincompletevisiblelightharvesting.Therehavebeenmanyattemptstoenhanceitsphotocatalyticperformance,suchasdoping,11,12depositingmetals13–15andcouplingwithsemiconductors.16–20

Withconjugatedpsystem,graphiticcarbonnitride(g-C3N4)exhibitshighchemicalandthermalstability,aswellasversatilityinmechanical,electronicandopticalpropertiesduetotheoutstandingseparationandmigratione?ciencyofphotogeneratedelectron–holepairs.21–25IthasbeenreportedthatanorganicsurfacecoatingonZnOcouldenhancetheseparationofphotoinducedcarriersandprotectZnOfromphoto-corrosion.26,27Althoughtherehavebeen

InstituteofEnergyandFuel,XinxiangUniversity,Xinxiang,China453003.E-mail:jwchow@163.comb

DepartmentofChemistry,TsinghuaUniversity,Beijing,China100084.E-mail:zhuyf@tsinghua.edu.cn

?Electronicsupplementaryinformation(ESI)available:TEMimages,FT-IRspectra,XRDpatterns,Ramanspectraandfluorescenceemissionspectraofg-C3N4andg-C3N4@ZnOareavailableintheESI.SeeDOI:10.1039/c4cp02061h

a

manyattemptstopreparehybridphotocatalystsintheliquidphase,solidphasesynthesisisrarelyreported.28Herein,g-C3N4@ZnOhybridmaterialswithvisiblelightphotocatalyticperformancehavebeenpreparedbyfacilemechanicalmilling.Thevisiblelightphotocatalyticactivityissignificantlyimprovedbytheexpandedlightresponserangeandthephotocorrosioniseffectivelyinhibited.Themechanismoftheenhancementofthephotocatalyticactivityisalsodiscussed.

Experimental

Themorphologiesandstructuresofthesampleswereexaminedwithtransmissionelectronmicroscopy(TEM)byHitachiHT-7700TEMandJEM1010HRTEMoperatedatanacceleratingvoltageof100kVand200kV,respectively.UV-visdi?usereflectancespectroscopy(DRS)wascarriedoutonaHitachiU-3010UV-visspectrophotometer.BaSO4wasthereferencesample.TheBrunauer–Emmett–Teller(BET)surfaceareawasmeasuredbyASAP2010V5.02H.Thecrystallinityoftheas-preparedsamplewascharacterizedbyX-raydiffraction(XRD)onBrukerD8-advancediffractometerusingCu-Karadiation(l=1.5418?).Thephotocurrentsweremeasuredonanelectrochemicalsystem(CHI660B,China).Visiblelightwasobtainedfroma500Wxenonlamp(InstituteforElectricLightSources,Beijing)witha420nmcutofffilter.

Theg-C3N4wassynthesizedbydirectlyheatingmelamine.Inatypicalrun,5gmelaminepowderwasputintoanaluminacrucibleandheatedinamu?efurnaceat5301Cfor4hwithaheatingrateof51Cminà1.Aftercoolingtoroomtemperature,theproductwascollectedandgroundintopowder.Thepreparation

of

Thisjournalis?theOwnerSocieties2014Phys.Chem.Chem.Phys.,2014,16,17627--17633|17627

PaperPCCP

33:14.

C3N4@ZnOphotocatalystwascarriedoutinaballmiller(XQM-0.4,madeinChangsha,China).Theprocedureofpreparationisasfollows:ZnOpowderandagateballweremixedintheagateballmillingtankwitharatioof1:10,andthenacertainamountofC3N4wasadded.Afterbeingmilledforacertaintimeatdi?erentspeeds,thefinalsampleswereusedforcharacterizationandthedeterminationofphotocatalyticactivity.

Thephotocatalyticactivitieswereevaluatedbythedecompositionofmethyleneblue(MB).Visibleirradiationwasobtainedfroma500WXelamp(InstituteforElectricLightSources,Beijing)witha420nmcuto?filter,andtheaveragevisiblelightintensitywas35mWcmà2.TheUVirradiationwasobtainedfroma300WHglampwitha365nmcuto?filter.Theaverageintensitywas1.2mWcmà2.TheconcentrationofMBwasanalyzedbyrecordingtheabsorbanceofthecharacteristicbandat664nmusingaHitachiU-3010UV-visspectrophotometer.Toinvestigatethedegradationmechanism,radicaltrappingexperimentswereperformedundervisibleandUVlightirradiation.ThereactionconditionwasthephotodegradationofMBwiththeadditionof1mmolLà1hydroxylradicalscavenger(tBuOH)and1mmolLà1holescavenger(EDTA-2Na).

Toinvestigatethetransitionofphotogeneratedelectronsofg-C3N4,astandardthree-electrodecellwithaworkingelectrode(as-preparedphotocatalyst),aplatinumwireascounterelectrode,andastandardcalomelelectrode(SCE)asreferenceelectrodewereusedinthephotoelectricstudies.0.1MNa2SO4wasusedastheelectrolytesolution.PotentialsweregivenwithreferencetoSCE.Thephotoresponsesofthephotocatalystsatlightonando?weremeasuredat0.0V.Theworkingelectrodeswerepreparedasfollows:10mgoftheas-preparedphotocatalystwassuspendedin1mLethanoltoproduceaslurry,whichwasthendip-coatedontoa2cm?4cmindiumtinoxide(ITO)glasselectrode.Electrodeswereexposedtoairfor12htoeliminatewaterandsubsequentlycalcinedat1501Cfor5h.

Resultsanddiscussion

Formationofhybridcatalystsviamechanicalmilling

AsshowninTable1andTableS1(ESI?),thespecificsurfacearea(SBET),porevolume(Vp),andaverageporediameterofpureZnOincreaseafterballmilling,indicatingthesmallerparticlesizeofmilledZnO.ThevaluesofSBET,VPandaverageporediameterof3%-C3N4@ZnOdonotsignificantlychangewiththeincreaseofmillingspeed.However,thevaluesofSBET,VPandaverageporediameterofC3N4@ZnOdecreasewiththeincreaseofmillingspeed,whichmaybeattributedtothemechanicalandchemicalinteractionbetweenC3N4andZnOandthedispersionstateofC3N4.

Fig.1showstheporesizedistributioncurvesofsamplesdeterminedfromtheadsorptionbranchoftheisotherms.The

Table1

Thespecificsurfaceareaofthesampleatdi?erentmillingspeeds

ZnO

3%-C3N4@ZnOSamplesNomilling350rpm250rpm300rpm350rpmSBET(m2gà1)

10.3

13.0

12.3

12.1

12.5

17628|Phys.Chem.Chem.Phys.,2014,16,17627--17633Fig.1Theporesizedistributioncurvesof

samples.

hybridphotocatalystspreparedbyballmillingshowmoreapparentporedistributionthanpureZnO.Typicalnanoporesappearasbroadpeaksat5–40nmforhybridphotocatalyst,andthepeakcentersatabout10nm.Thechangesofporesizedistributionsofhybridcatalystpreparedatdifferentmillingspeedsarelessobvious,whichmaybeattributedtothemechanicalandchemicalinteractionbetweenC3N4andZnOandthedispersionstateofC3N4.

AscanbeseenfromtheHRTEMimages(Fig.2),thed-spacingofZnOis0.136nm,correspondingtothe(201)interplanarspacing.Thehigh-resolutionTEMimagesof3%-C3N4@ZnOshowthattheZnOparticlesaresurroundedbyC3N4layers,andtheoverallthicknessoftheC3N4shellisabout0.365nm,whichisidenticaltothethicknessofamonolayerofC3N4.Therefore,itcanbeconcludedthattheZnOparticlesaresurroundedbyC3N4monolayers.Asshownintheimagesof7%-C3N4@ZnO,thethicknessofC3N4layersaroundZnOparticlesisabout5nm,indicatingthemultilayerloadingofC3N4.

TheopticalpropertiesoftheC3N4@ZnOmaterialswereprobedwithUV-visdi?usereflectancespectroscopy,showninFig.3.

Fig.2High-resolutionTEMimagesof3%-C3N4@ZnO(a)and(b);7%-C3N4@ZnO(c)and(d).

Thisjournalis?theOwnerSocieties2014

Published on 16 July 2014. Downloaded by Sichuan University on 08/06/2015 09:

PCCPPaper

33:14.

Fig.3UV-visdi?usereflectancespectraofC3N4,ZnOandC3N4

@ZnO.

TheabsorptionedgeofC3N4@ZnOsamplesexpandstothevisiblelightregionduetothepresenceofC3N4ontheZnOsurface,indicatingthee?ectivesurfacehybridizationofZnObymechanicalmilling.TheabsorptionofvisiblelightoriginatesfromC3N4onthesurfaceoftheC3N4@ZnOmaterials.

visible light c3n4 8.Preparation of visible light-driven g-C3N4@ZnO_图文

AsshowninFig.4a,C3N4@ZnOmaterialsshowhigherphotocatalyticactivityundervisiblelightandthedegradationrateofMBincreaseswiththeincreasingamountofC3N4loading.Thedegradationrateincreasestoabout3timestothatofpureC3N4whentheamountofC3N4loadingwasincreasedfrom1%to7%.Theresultimpliesthattheseparationandmigratione?ciencyofphotogeneratedelectron–holepairswasimprovedbythesurfacehybridizationofC3N4,whichresultedintheenhancementofphotocatalyticactivity.ThephotocatalyticactivityundervisiblelightwasmainlygeneratedfromC3N4.Themigrationefficiencyofphotoinducedcarrierswasenhancedbytheconjugatedpbond.TheZnOmaterial,astheelectronacceptor,canfurtherincreasetheseparationefficiencyofphotogeneratedelectron–holepairs.

Fig.4bshowsthatthephotocurrentofhybridizedcatalystsundervisiblelightirradiationwasinorderof5%-C3N4@ZnO43%-C3N4@ZnO41%-C3N4@ZnO4C3N4,whichcoincideswiththatofthephotocatalyticactivityundervisiblelight.ThephotocurrentundervisiblelightmainlyoriginatedfromC3N4andwasdeterminedbytheseparatione?ciencyofphotogeneratedcarriersofC3N4materials.Therefore,thephotocurrentwasenhancedbytheincreasingamountofC3N4loadingandwaslargerthanthatofpureC3N4duetotheimprovedseparatione?ciencyofphotogeneratedcarriers,becauseofZnOactingastheelectronacceptor.Undervisiblelightirradiation,thephotocurrentof5%-C3N4@ZnOwasabout8timesashighasthatofC3N4.Thephotocurrentreflectstheseparatione?ciencyofphotogeneratedcarriers,hencethehybridizationofC3N4cane?ectivelyimprovetheseparatione?ciencyofphotogeneratedelectron–holepairs.AsshowninFig.5a,thephotocatalyticactivityofhybridizedcatalystsundervisiblelightwasenhancedwiththeincreasedmillingspeedandfixedmillingtime.Thereactionrateofthecatalystproducedbyamillingspeedof350rpmwasabout3timesashighaspureC3N4.Fig.5bshowsthatthephotocurrentundervisiblelightirradiationwasinorderofI350r4I300r4I250r4IC3N4.

Thisjournalis?theOwnerSocieties2014Fig.4VisiblelightphotocatalyticdegradationofMB(1?10à5molLà1)byg-C3N4@ZnOwithvariousweightcontentofC3N4(1%,3%,5%,and7%)under500WXelampwitha420nmcuto?filter(a);photocurrentresponsesofsamplesatdi?erentweightcontentofC3N4(1%,3%and5%),under500WXelampwitha420nmcuto?filter(b).

TheresultindicatesthatthephotocurrentofC3N4@ZnOmaterialswasincreasedremarkablybytheincreaseinmillingspeed.Thephotocurrentofhybridizedcatalystproducedbyamillingspeedof350rpmwasabout2timesashighaspureC3N4.TheenhancementofphotocurrentimpliedthattherewereinteractionsbetweenC3N4andZnO.Theseparatione?ciencyofphotogeneratedelectron–holepairwasincreasedbythemodificationofC3N4molecules,andtherebythephotocurrentresponsewassignificantlyimprovedaswell.

Thee?ectofballmillingtimeonthephotocatalyticactivityofg-C3N4@ZnOhybridphotocatalystisshowninFig.6.Theoptimummillingtimeis6h,andthereactionrateat6hisabout1.2timesasthatof10h.TheresultismainlycausedbytheincreasedactivitysitesandcrystallatticedistortionofZnOintheprocessofballmilling.

Thestabilityisofgreatsignificanceforphotocatalystsinpracticalapplications.Thephotoactivityof3%-C3N4@ZnOwasrecycle-testedundervisiblelight.ItisshowninFig.7thatthephotocatalystexhibitsstablephotocatalyticactivityfordecom-posingMBafterfourcycles.Thesmalldeclineintheactivityismainlyduetothelossofcatalystduringtheexperiment.Therefore,itshowsthattheMBdegradationabilitiesofg-C3N4@ZnOarenotdecreasedandtheirphotocatalyticactiv-itiesarestable,indicatingthestronghybridizatione?ectbetweenC3N4and

ZnO.

Phys.Chem.Chem.Phys.,2014,16,17627--17633|17629

Published on 16 July 2014. Downloaded by Sichuan University on 08/06/2015 09:

PaperPCCP

33:14.

Fig.5PhotocatalyticdegradationofMB(C0=1?10à5molLà1)byg-C3N4@ZnOwithvariousballmillingrate(r=250rpm,300rpmand350rpm)under500WXelampirradiationwitha420nmcuto?filter(a);transientphotocurrentresponsesofdi?erentballmillingrateundervisiblelight(500WXelampirradiationwitha420nmcuto?filter)

(b).

Fig.6E?ectsofballmillingtimeonthephotocatalyticactivitiesofg-C3N4@ZnOundervisible

light.MechanismofenhancedactivitybymechanicalmillingAsshowninFig.8,chargetransferonthesurfaceofelectrodeisdeterminedastheratedeterminingstepaccordingtothearcontheEISNyquistplotofallthesamples.ThearcradiusontheEISNyquistplotofallITO/C3N4@ZnOelectrodesissmallerthanthatoftheITO/C3N4electrodeundervisiblelight,whichmeansamoree?ectiveseparationofphotogeneratedelectron–holepairsandfasterinterfacialchargetransferhasoccurred.Theresultisconsistentwiththatofphotocurrent.

17630|Phys.Chem.Chem.Phys.,2014,16,17627--17633Fig.7Thestabilityofg-C3N4@ZnO(CMB=1?10à5molLà1,Cat.50mg/100mL,l4420

nm).

Fig.8Electrochemicalimpedancespectroscopy(EIS)NyquistplotofC3N4andg-C3N4@ZnO.

Theradicalstrappingexperimentsundervisiblelightwereemployedtoinvestigatethephotocatalysismechanismofg-C3N4@ZnOmaterials.Thewaterpollutantcanbedegradedbytheradicals(OH??,O2à??andholes)generatedduringthephotocatalyticreaction.Fig.9demonstratesthatphotocatalyticactivityofg-C3N4@ZnOremarkablyreducedbytheadditionoftert-butylalcoholasthehydroxylradicalscavenger,whichimpliesthatholesandO2à??radicalsarethemainoxidativespeciesinthereactionofg-C3N4

@ZnO.

Thisjournalis?theOwnerSocieties2014

Published on 16 July 2014. Downloaded by Sichuan University on 08/06/2015 09:

PCCPPaper

33:14.

thanthatofpureZnO.ThereducedphotocatalyticactivityunderUVwasmainlycausedbythegenerationofdefectsduringthemechanicalmillingprocess.

Fig.11bshowsthatthephotocurrentunderUVirradiationwasinorderofpureZnO41%-C3N4@ZnO43%-C3N4@ZnO45%-C3N4@ZnO47%-C3N4@ZnO4pureC3N4andpresentsasimilarchangetrendtothatofphotocatalyticactivityunderUVirradiation.ComparedwiththatofpureZnO,thephotocurrentofmilledpureZnOwasgreatlyreduced.Ononehand,thereductionofphotocurrentforhybridizedcatalystswasduetothedecreaseofUVabsorptionbythesurfacehybridizationofC3N4.Ontheotherhand,thedefectsonthesurfaceofmilledFig.9Thecaptureexperimentofactivespeciesof3%-C3N4@ZnOundervisible

light.

Onthebasisoftheaboveanalysis,itcanbeconcludedthatthephotocatalyticactivityoftheg-C3N4@ZnOhybridundervisiblelightmaybemainlyattributedtothechemicale?ectbetweenC3N4andZnO.ThepossiblemechanismisshowninFig.10.ItiswellknownthatZnOitselfcannotbeexcitedbyvisiblelight,whileC3N4canbeexcitedbyvisiblelightandphotogeneratedelectronsaregeneratedonLUMO.TheLUMOpositionofC3N4(à1.1eV)ishigherthanthatoftheconductionbond(CB)ofZnO(à0.2eV),sothephotogeneratedelectronsonLUMOofC3N4canbeeasilyinjectedintotheCBofZnOandsubsequentlytransfertothesurfaceoftheC3N4@ZnOhybridtoreactwithwaterandoxygen.Thisreactionyieldshydroxylandsuperoxideradicalsthatareabletooxidizethepollutantsbecauseoftheirhighoxidativecapacity,producingvisiblephotocatalyticactivity.

InfluenceofmechanicalmillingonUVphotoactivity

AsshowninFig.11a,thephotocatalyticactivityofg-C3N4@ZnOmaterialsunderUVirradiationdecreaseswiththeadditionofC3N4loading.ThephotocatalyticactivityofhybridizedcatalystswithalowcontentofC3N4isslightlyhigherbutismuchlower

Fig.10Schematicillustrationofelectron–holeseparationandtransportandphotocatalyticactivityoftheg-C3N4@ZnOphotocatalystundervisiblelight

irradiation.

Thisjournalis?theOwnerSocieties2014ZnObecametherecombinationcenterofphotogeneratedcarriers,whichdecreasedthephotocurrentaswell.

Fig.12ashowsthephotocatalyticactivityofcatalystsproducedbydi?erentmillingspeeds.Thecatalystproducedbyamillingspeedof350rpmexhibitsthemaximumactivityinhybridizedmaterials,buttheactivityisstilllowerthanthatofpureZnO.ToinvestigatethecauseofdecreasedactivityunderUVlight,pureZnOwasmilledusingthesamemethod.ThephotocatalyticactivityofmilledZnOwasnotablydecreased,whichmaybecausedbythestrainofthecrystalstructureandincreasingdefectsonthesurfaceofZnO.Thespeculationwasproved

by

Fig.11Photocatalyticactivityofg-C3N4@ZnOwithdi?erentcontentsofC3N4(1%,3%,5%and7%)underUVlight(300Whighpressuremercurylampwitha365nmcuto?filter)(a);photocurrentresponsesofdi?erentcontentofC3N4(1%,3%,5%and7%)underUVlight(15Wmercurylamp,254nminwavelength,ZnO(m)-milledZnO)(b).

Phys.Chem.Chem.Phys.,2014,16,17627--17633|17631

Published on 16 July 2014. Downloaded by Sichuan University on 08/06/2015 09:

PaperPCCP

33:14.

Fig.12E?ectsofballmillingrateonthephotocatalyticactivityunderUVlightirradiation(Under300WHglampwitha365nmcuto?filter)(a);transientphotocurrentresponsesofdi?erentballmillingrateunderUVlight(15Wmercurylamp,254nminwavelength)

(b).

photocurrentofcatalystsproducedbydi?erentmillingspeeds(Fig.12b).

TheUVactivityisdrasticallydecreasedviathemechano-chemicalmethodbetweenC3N4andZnOhybridization,com-paredwithpureZnOwithnoballmilling(Fig.13).Thereasonisthatwiththeincreaseinballmillingtime,thecrystallatticedistortionofZnOandmanydefectsmaybeproducedduringthemillingprocesstoresultinthedecreasedseparatione?ciencyofphotoexcitedchargecarrierscomparedwithpureZnO.

Fig.13Theinfluenceofdi?erentballmillingtimeonactivityunderUV

light.

17632|Phys.Chem.Chem.Phys.,2014,16,17627--17633Fig.14Electrochemicalimpedancespectroscopy(EIS)NyquistplotofZnO,C3N4andg-C3N4@ZnO.

AsshowninFig.14,chargetransferonthesurfaceofelectrodeisdeterminedastheratedeterminingstepaccordingtothearcontheEISNyquistplotofallthesamples.ThearcradiusontheEISNyquistplotofallITO/C3N4@ZnOelectrodesissmallerthanthatoftheITO/ZnOelectrodeunderUVlight,whichismainlycausedbythecarrierconcentration;thereactionrateincreasedandtheinterfacialresistancedecreasedunderUVlightirradiation.Theresultisconsistentwiththatofphotocurrent.

ThereducedphotocatalyticactivityunderUVofg-C3N4@ZnOcouldprobablybeattributedtotheformationofdefectsintheparticlesduringtheballmillingprocess.Duringtheprocessofballmilling,thecrystallatticeofZnOundergoessevereplasticdeformation,producingstressesandstrains.CrystallatticedistortionofZnOoccursandatthesametimemanydefectsinsideZnOparticlesareformedduringtheballmillingprocess.Thedefectsbecometherecombinationcenterofphoto-generatedcarriers,andtheUVphotocatalyticactivityisdecreasedbythem.

TheradicalstrappingexperimentsunderUVlightwereemployedtoinvestigatethephotocatalysismechanismofg-C3N4@ZnOmaterials.AsshowninFig.15,thephotocatalyticactivitywassomewhatreducedafteraddingtert-butylalcoholashydroxylradicalscavengerandwassignificantlyinhibitedafteraddingEDTA-2Naasholeradicalscavenger,indicatingthatholesandOH??radicalsarethemainoxidativespecieson

ZnO.

Thisjournalis?theOwnerSocieties2014

Published on 16 July 2014. Downloaded by Sichuan University on 08/06/2015 09:

PCCPPaper

5P.SpathisandI.Poulios,Corros.Sci.,1995,37,673–680.6A.vanDijken,A.H.Janssen,M.H.P.Smitsmans,D.VanmaekelberghandA.Meijerink,Chem.Mater.,1998,10,3513–3522.

7J.C.Wang,P.Liu,S.M.Wang,W.Han,X.X.WangandX.Z.Fu,J.Mol.Catal.A:Chem.,2007,273,21–25.

8P.E.deJongh,E.A.Meulenkamp,D.VanmaekelberghandJ.J.Kelly,J.Phys.Chem.B,2000,104,7686–7693.

9N.Daneshvar,D.SalariandA.R.Khataee,J.Photochem.Photobiol.,A,2004,162,317–322.

10X.Q.Qiu,L.P.Li,J.Zheng,J.J.Liu,X.F.SunandG.S.Li,

J.Phys.Chem.C,2008,112,12242–12248.

11X.Q.Qiu,G.S.Li,X.F.Sun,L.P.LiandX.Z.Fu,

33:14.

Fig.15ThecaptureexperimentofactivespeciesofZnOunderUVlight.

Conclusions

g-C3N4@ZnOhybridsvisiblelight-drivenphotocatalystshavebeenpreparedviamechanicalmilling.Thehybridphotocata-lystsclearlyshowedsuperiorphotocatalyticstabilityforthephotodegradationofmethyleneblue.Thevisiblelightphoto-catalyticactivityofg-C3N4@ZnOwas3.0timesasthatofpureC3N4sampleduetothestronginteractionbetweenC3N4andZnO.Thesuperiorphotocatalyticactivityofthehybridphoto-catalystmainlyoriginatesfromthetransitionofphoto-generatedelectronsonLUMOofC3N4andtheCBofZnO.Thissimplemechanicalmillingmethodcouldbeusedasauniversalpathwaytoimprovetheactivityofphotocatalystandappliedinenvironmentalremediation.

Acknowledgements

ThisworkwaspartlysupportedbyNationalBasicResearchProgramofChina(973Program)(2013CB632403),NationalHighTechnologyResearchandDevelopmentProgramofChina(2012AA062701)andChineseNationalScienceFoundation(20925725and21373121)

Notesandreferences

1A.A.Khodja,T.Sehili,J.F.PilichowskiandP.Boule,J.Photochem.Photobiol.,A,2001,141,231–239.

2B.Q.CaoandW.P.Cai,J.Phys.Chem.C,2008,112,680–685.

3Y.M.Cristina,J.Rodrouez,J.Freer,N.Dura

′nandH.Mansilla,Chemosphere,2000,41,1193–1197.

4E.A.Meulenkamp,J.Phys.Chem.B,1998,102,7764–7769.

Thisjournalis?theOwnerSocieties2014Nanotechnology,2008,19,5703–5708.

12J.Bandara,K.TennakoneandP.P.B.Jayatilaka,Chemo-sphere,2002,49,439–445.

13L.Q.Jing,B.Q.Wang,B.F.Xin,S.D.Li,K.Y.Shi,W.M.Cai

andH.G.Fu,J.SolidStateChem.,2004,177,4221–4227.14A.Stroyuk,V.V.ShvalaginandS.Y.Kuchmii,Theor.Exp.

Chem.,2004,40,98–104.

15M.L.Zhang,T.C.An,X.H.Hu,C.Wang,G.Y.Shengand

J.M.Fu,Appl.Catal.,A,2004,260,215–222.

16R.S.Mane,W.J.Lee,H.M.PathanandS.H.Han,J.Phys.

Chem.B,2005,109,24254–24259.

17X.G.Chen,Y.Q.He,Q.Zhang,L.J.Li,D.H.HuandT.Yin,

J.Mater.Sci.,2010,45,953–960.

18R.Comparelli,E.Fanizza,M.L.Curri,P.D.Cozzoli,

G.MascoloandA.Agostiano,Appl.Catal.,A,2005,60,1–11.19Y.Wang,R.Shi,J.LinandY.Zhu,EnergyEnviron.Sci.,2011,

4,2922–2929.

20G.Yu,J.Gao,J.C.Hummelen,F.WudlandA.J.Heeger,

Science,1995,270,1789–1791.

21J.M.Hu,W.F.Cheng,S.P.Huang,D.S.WuandZ.Xie,

Appl.Phys.Lett.,2006,89,261117–261119.

22Y.Wang,X.Bai,C.Pan,J.HeandY.Zhu,J.Mater.Chem.,

2012,22,11568–11573.

23C.Pan,J.Xu,Y.Wang,D.LiandY.Zhu,Adv.Funct.Mater.,

2012,22,1518–1524.

24X.Bai,L.Wang,R.ZongandY.Zhu,J.Phys.Chem.C,2013,

117,9952–9961.

25H.B.Fu,T.G.Xu,S.B.ZhuandY.F.Zhu,Environ.Sci.

Technol.,2008,42,8064–8069.

26H.Zhang,R.L.ZongandY.F.Zhu,J.Phys.Chem.C,2009,

113,4605–4611.

27L.W.Zhang,H.Y.Cheng,R.L.ZongandY.F.Zhu,J.Phys.

Chem.C,2009,113,2368–2374.

28S.C.Yan,S.B.Lv,Z.S.LiandZ.G.Zou,DaltonTrans.,2010,

39,

1488–1491.

Phys.Chem.Chem.Phys.,2014,16,17627--17633|17633

Published on 16 July 2014. Downloaded by Sichuan University on 08/06/2015 09:


百度搜索“爱华网”,专业资料,生活学习,尽在爱华网  

爱华网本文地址 » http://www.aihuau.com/a/366851/364732143295.html

更多阅读

100道门2013攻略100关图文详解:1 第1~10关

100道门2013攻略100关图文详解:[1]第1~10关——简介100道门2013是安卓平台一款新颖的解密益智游戏,你需要在房间中发现线索,然后把门打开进入下一个房间。每一个房间的主题都不一样,将给你带来百次不同的游戏体验!100道门2013攻略100关

《机械迷城》第七关图文攻略 迷城的国度图文攻略

出门来,右边河太远,过不了,只能向左走.左走来发现前面漏水了。机器人最怕水,正好旁边有一位打伞的机器人大妈,和她交谈,得知想要她的伞必须要用狗来换,向回走,发现狗正躲在对面的角落里找东西吃,想抓到狗就要先把它引出来《机械迷城》第七关

雷区里的工具怎么做?图文攻略 samorost3图文攻略

雷区里的工具怎么做?图文攻略——简介魔兽世界雷区里的工具怎么做?斯巴索克的工具怎么拿?本文为你一一道来。雷区里的工具怎么做?图文攻略——工具/原料78级左右角色一个基础装备若干雷区里的工具怎么做?图文攻略——方法/步骤雷区里的

怎么让两台电脑共享上网超详细图文 黑暗之魂图文详细攻略

怎么让两台电脑共享上网【超详细图文】——简介window7系统下实现一条网线两台具有无线网卡功能的笔记本电脑共享上网,具体的步骤如下,假设存在电脑A与B怎么让两台电脑共享上网【超详细图文】——工具/原料一条网线 两台具有无线网卡

声明:《visible light c3n4 8.Preparation of visible light-driven g-C3N4@ZnO_图文》为网友姑娘我娶你分享!如侵犯到您的合法权益请联系我们删除