molecular cloning molecular cloning Molecular Cloning, Biochemical Characterization_图文

导读:爱华网网友为您分享以下“Molecular Cloning, Biochemical Characterization_图文”的资讯,希望对您有所帮助,感谢您对aIhUaU.com的支持!

PlantMolBiolRep(2013)31:547–557DOI10.1007/s11105-012-0523-6

ORIGINALPAPER

MolecularCloning,BiochemicalCharacterization,andDifferentialExpressionofanAcetyl-CoAC-AcetyltransferaseGene(AACT)ofBrahmi(Bacopamonniera)

RishiK.Vishwakarma&Ruby&SomeshSingh&PrashantD.Sonawane&SameerSrivastava&

UmaKumari&R.J.SantoshKumar&BashirM.Khan

Published#online:21November2012

SpringerScience+BusinessMediaNewYork2012

AbstractBacopamonniera(Brahmi)isanimportantIndianmedicinalherbfoundinwetdampandmarshyplaces.Itproducesmedicinallyimportantcompoundsknownasbaco-sidesalongwithalkaloidslikebrahmineandherpestine.Bacosidesaretriterpenoidsaponinsandtheirbiosynthesistakesplaceviatheisoprenoidpathwaystartingwithacetyl-CoA.Acetyl-CoAC-acetyltransferase(AACT;EC2.3.1.9),alsoknownasacetoacetyl-CoAthiolase(ThiolaseII),cata-lyzesthecondensationoftwoacetyl-CoAtoform4-Ccom-poundacetoacetyl-CoA.Acetoacetyl-CoAisanimportantstartingmoleculeforbiosynthesisofvariousmetabolites.Here,wereportthecDNAcloningandcharacterizationofacetyl-CoAC-acetyltransferasegenefromB.monniera.Thefull-lengthgenewasisolatedusingaRACEPCRprotocol.ThecDNAencodingAACTwasdesignatedasBmAACT(FJ947159)revealedanORFof1,218bpand405aminoacids,andshares80%similaritywithotherplantAACTs.PhylogeneticanalysisshowedthatBmAACTisrelatedclose-lytootherdicotplantsAACTs.TheBmAACTgenewasover-expressedinEscherichiacoliasa6XHis-tagfusionproteinandpurifiedtohomogeneitybyNi-NTAandgelfiltrationchromatography.Activityofrecombinantproteinwascon-firmedbythiolyticcleavageofacetoacetyl-CoAinthepres-enceof5mMMg2+,showingKmandVmaxof20.67μMand96.21μmol/min,respectively,1withhighcatalyticefficiency(kcat02.30×105min?).Quantitativereal-timePCRanalysisshowedthattheexpressionofBmAACTistissue-specific,and

R.K.VishwakarmaRubyS.SinghP.D.SonawaneS.Srivastava:U.Kumari:R.J.SantoshKumar:B.M.Khan(*)PlantTissueCultureDivision,NationalChemicalLaboratory,Dr.HomiBhabhaRoad,

Pune411008Maharashtra,Indiae-mail:bm.khan@ncl.res.in

accumulationoftranscriptsisgreaterinrootsandpetals,followedbysepals,stem,leafandpedicel.

KeywordsAcetyl-CoAC-acetyltransferase.Bacopamonniera.Isoprenoidpathway.TriterpenoidsaponinAbbreviationsAMV-RTAvianmyeloblastosisvirus

reversetranscriptase

cDNAComplementaryDNAAACTAcetyl-CoAC-acetyltransferaseBmAACTBacopamonnieraAcetyl-CoA

C-acetyltransferasegene

BMEβ-MercaptoethanolRACERapidamplificationofcDNAendsqRT-PCRQuantitativereal-timePCRIPTGIsopropylβ-D-thiogalactopyranosideSDS-PAGESodiumdodecylsulfate

polyacrylamidegelelectrophoresis

UTRUntranslatedregion

Introduction

Thiolasesplayanimportantroleinmanybiochemicalprocess-es,includingisoprenopid,steroidandalkaloidbiosynthesisaswellasβ-oxidationoffattyacids.Isoprenoids,alsoreferredtoasterpenoids,representavastgroupofnaturalproductswithvarietyoffunctionsintheprimaryandsecondarymetabolismofplants(Langeetal.2000).AllisoprenoidsaresynthesizedfromtwouniversalC5compoundsknownasisopentenyldi-phosphate(IPP)anditsisomerdimethylallyldiphosphate(DMAPP)(KirbyandKeasling2009).BiosynthesisofIPPtakesplaceviaeitheroftwopathways:themevalonate

548(MVA)pathwayorthenon-mevalonate/methylerythritolphos-phate(MEP)pathway(Langeetal.2000;Setoetal.1996).TheMVApathwayoperatesinthecytosolwhereastheMEPpath-wayexistsinplastidsandisconnectedthroughIPPexchangeacrossthechloroplastmembrane(Lauleetal.2003).However,nativecross-talkbetweentheMVAandMEPpathwaysisstillunclear(Suzukietal.2009).

TheMVApathwaystartswiththetwo-carboncompoundacetylCoA,whichcondensesintothe4-Ccompoundacetoacetyl-CoAcatalyzedbyacetyl-CoAacetyltransferase(AACT).Acetyl-CoAacetyltransferase(AACT)orthiolasesareclassifiedintotwotypes,degradativethiolases(E.C.2.3.1.16)andbiosyntheticthiolases(E.C.2.1.1.9)(ModisandWierenga2000).Thedegradativethiolasesareinvolvedinβ-oxidationoffattyacids(JenkinsandNunn1987),where-asthebiosyntheticthiolasescatalyzethecondensationoftwoacetyl-CoAmoleculestoformacetoacetyl-CoA.Igualetal.(1992)reportedthatacetoacetyl-CoAisanimportantstartingmoleculeinhormoneandcholesterolbiosynthesis.Inprokar-yotes,AACTcatalyzesthefirststepofpolyhydroxybutyrate(PHB)biosynthesisviathethiolaseIIpathway(SteinbuchelandHein2001).IntheMVApathway,theenzyme3-hydroxy-3-methyl-glutaryl-CoAreductase(HMGR)catalyzesthecon-versionofHMG-CoAtomevalonateandhasbeendescribedastherate-limitingstep(BuhaescuandIzzedine2007;Hunter2007).KirbyandKeasling(2009)suggestedthatHMGRactivityispost-transcriptionallyandpost-translationallyregu-latedinplants.Interestingly,thecondensationreactionofthiolasefromeukaryoteshasnotbeenrecognizedasanim-portantregulatorypointinbiosyntheticprocesses;however,itwasprovedrecentlythatAACTisaregulatoryenzymeinisoprenoidbiosynthesisandisinvolvedinabioticstressadap-tationinalfalfa(Sotoetal.2011).

ThiolasegeneshavebeenstudiedinvariousorganismsincludingClostridium(MengandLi2006),Rhizobium(KimandCopeland1997),Dictyostelium(Tanakaetal.2010),radish(VollackandBach1996),Arabidopsis(Carrieetal.2007;Ahumadaetal.2008),sunflower(Oeljeklausetal.2002;Dyeretal.2009),andHeveabrasiliensis(Sandoetal.2008).However,littleisknownabouttheroleofthisenzymeinisoprenoidbiosynthesisinplants(VollackandBach1996;Bachetal.1999).Sandoetal.(2008)functionallycharacter-izedH.brasiliensisAACT(HbAACT1)inayeastheterolo-goussystem,andreportedthatheterozygousyeastlackedanalleleofthethiolaseIIgeneinvolvedintheMVApathway.Moreover,itwasalsofoundthatexpressionofHbAACT1promotedyeastgrowthonnonselectionmedium.Recently,theAACTgenefromsunflowercotyledonswascloned,andarecombinantenzymeofspecificactivityof63nkat/mgproteinwaspurified(Dyeretal.2009).Inarecentstudy,MedicagosativathiolaseII(MsAACT1)wasover-expressedinplanta,andtransgenicplantsexhibitedsalinitytoleranceanden-hancedproductionofsqualenewithoutalteringHMGR

PlantMolBiolRep(2013)31:547–557

activityundersaltstressconditions(Sotoetal.2011).Inotherstudies,thenumberofgenesassociatedwithsaltstressresponsesinrootsofRhizophorastylosa(Basyunietal.2011)andHibiscus(Yangetal.2011)havebeendetermined.TransgenicArabidopsisandtobaccoplantsover-expressingglycogensynthasekinaseaswellaslateembryogenesisabun-dant(LEA)andbasicleucinezipper(bZIP)genesshowedenhancedtolerancetosaltandosmoticstresses(Heetal.2012;Quetal.2012).

Inthisstudy,ageneencodingthiolasewasisolated,clonedandcharacterizedfromthemedicinalherbBacopamonniera(Brahmi).ItisanimportantAyurvedicmedicineusedasabraintonic,memoryenhancer,revitaliserofsensoryorgans,diureticandcardio-tonic(SivarajanandBalchandran1994;Chopraetal.1969).Themainactiveconstituentsofthisplantaretriter-penoidsaponinscalledbacosides;differentformsofbacosideshavebeenidentified(Chakravartyetal.2001;Rastogietal.1994;Chatterjeeetal.1963).Theyaresynthesizedfromacetyl-CoAmoleculeviatheMVApathway.Recently,itwasreportedthatAACTisregulatoryenzymeintheisoprenoidpathwayundersaltstressconditionsandenhancestheproduc-tionofsqualene(Sotoetal.2011).Therefore,studyingtheAACTgenecouldhavegreatbiotechnologicalimportance.Over-expressionofthisgeneinBacopacouldhelpabioticstresstolerance.Thetransgenicplantsdevelopedwouldhaveimprovedsqualenecontent,ultimatelyleadingtoformationofvarioustriterpenoids,andneedstobefurtherstudiedinplanta.

MaterialsandMethodsPlantMaterial

TheaerialpartofB.monnieragrowninagreenhousemaintainedattheNationalChemicalLaboratory(NCL)wasusedforisolationoftheBmAACTgene.Quantitativereal-timePCR(qRT-PCR)wasperformedusingstem,leaf,root,sepal,pedicelandpetaloffield-grownplants.TotalRNAIsolationandFirst-StrandcDNASynthesisAerialpartsofB.monnieraplantsamplesweregroundinliquidnitrogentoafinepowderusingamortarandpestle.TotalRNAwasextractedfromapproximately100mgtissueusingTRIzol-Reagent(Invitrogen,Carlsbad,CA)asperthemanufacturer’sinstructions.ThequantityandqualityofisolatedRNAwascheckedat260nmand280nmwithUV-Visiblespectropho-tometer(NanoVueplus,GEHealthcare,Uppsala,Sweden)andRNAwasstoredinDEPC-waterat?80°Cforfutureuse.First-strandcDNAsynthesiswasperformedbyreversetranscriptionPCRwithtotalRNA(1μg)andoligo(dT)18asprimerusingavianmyeloblastosisvirusreversetranscriptase(AMV-RT;Promega,Madison,WI),accordingtothemanufacturer’s

PlantMolBiolRep(2013)31:547–557549

protocol.ForqRT-PCR,totalRNAwasisolatedfromdifferenttissuesandfirststrandcDNAwassynthesizedasabove.IsolationofPartialcDNAFragmentofBmAACTGeneApartialfragmentoftheBmAACTgenewasisolatedbyaPCR-basedapproach,usingcDNAasatemplate.TheAACTsequencesfromNCBIGenBankwerealignedusingtheClustalWprogramandprimersweredesignedfromconservedregions.Sixdifferentprimersweredesigned,namelycATF1,cATF2,cATF3,cATR1,cATR2andcATR3(Table1).PCRamplificationwascarriedoutusingdifferentcombinationsofprimersetsandelecrophoreticseparationwasdoneforamplifiedPCRproductson1%agarosegel.TheamplifiedproductwaspurifiedandclonedinpGEM-TeasyPCRcloningvector(Promega).AftertransformationinEscherichiacoli(XL-10Gold)competentcells,plasmidswereisolatedfrompositiveclonesandsequenced.

IsolationandCloningofFull-LengthBmAACTcDNAbyRACEPCR

Thefull-lengthcDNAsequenceofBmAACTwasisolatedby5′and3′RACEPCR.Gene-specificforwardandreverseprimersweredesignedfromknownpartialsequenceof

Table1Primersusedforthestudy

Serialno.1.2345678910111213141516171819

a

B.monniera.For5′and3′RACE,tworoundsofPCRwereperformedusinggene-specificprimerpairsRACEATBMR1andRACEATBMNestedR1,andRACEATBMF1andRACEATBMNestedF1,respectively,alongwithprimerssuppliedinkit(Table1).SMARTRACEcDNAamplifica-tionkit(Clontech,PaloAlto,CA)wasusedfor5′RACEandfor3′RACE,GeneRacerkit(Invitrogen)wasused.ThePCRproductsobtainedwereclonedinpGEM-Teasyvectorandsequenced.Thesequenceinformationof5′and3′RACEPCRproductcloneswasusedfordesigningofprimersATBMFullF1andATBMFullR1fromthestartandstopcodon(Table1)toobtainthefull-lengthgene.PCRwasperformedwithpfxTaqDNApolymerase(Invitrogen)usingcDNAasatemplate.Thefull-lengthampliconwasclonedinpGEM-Teasyvectorandsequenced.

BioinformaticsandEvolutionaryRelatednessAnalysisTheobtainedBmAACTsequenceswereanalyzedusingonlinebioinformaticstools(http://www.ncbi.nlm.nih.gov).Thede-ductionoftheaminoacidsequences,calculationofthetheo-reticalmolecularmassandpIwereperformedwithExPASyProteomictools(http://www.expasy.ch/tools/).Globalalign-mentoftwonucleotideoraminoacidsequences,andpercent-ageofidentitywerecalculatedusingtheEMBOSSPairwiseAlignmentAlgorithms(http://www.ebi.ac.uk/emboss/).

Primersequences(5′→3′)b

CTCGAGATGTTTGTGTTGTGGAGATGTTTGYRTTGTGGGWGTAAGAGAGCMATGTTGATCCGCWCCTCCTCCTCCGTTGCAGCTTTWGGWATAGCAAGAGCGCWGCYGCACCATCACTTATGCTGCCACCACAACATCATTGATTCCCACCTGTCCCAAGTTTGCACTTAGCAGTTGCCCGGACACCTATGGGA

GCTATTGAGAGTGCTCTTAAGAGAGCAATGGCTCCAGCAGCAGCAGCG

TTAGACAAGCTCCACAACGAGAGCCGCATATGGCTCCAGCAGCAGCAGCG

CTCGAGGACAAGCTCCACAACGAGAGCGCACGCGCGCTACACCGAAGGTCTGTACAAAGGGCAGGGACGGACTACGGCATGGGAGTTTGATTCCACGCTCAAAACTTTGG

CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT

AAGCAGTGGTATCAACGCAGAGTGCTGTCAACGATACGCTACGTAACGCGCTATGTAACGGCATGACAGTG

PrimernamecATF1cATF2cATF3cATR1cATR2cATR3

5′RACEATBM5′RACEATBM3′RACEATBM3′RACEATBMATBMFullF1

R1

NestedR1F1

NestedF1

ATBMFullR1pETATBMF1pETATBMR1

18SF(18SrRNA)a

18SR(18SrRNA)qAACTFqAACTR

UniversalprimerAMix(UPM)NestedUniversalprimerA(NUP)GeneRacer3′primer(3′GRP)

GeneRacer3′nestedprimer(3′NGRP)

a

GenBankaccession.No.JN148054

W0AorT,S0GorC,N0AorTorGorC,Y0TorC,R0AorG,M0AorC

b

202122

550MultiplesequencealignmentsofvariousplantAACTswerecarriedoutwithClustalW1.8(http://www.ebi.ac.uk/clustalw/).ConserveddomainsinBmAACTweredetectedusingConservedDomainDatabasesearchtool(CDD)onNCBIserver(http://www.ncbi.nlm.nih.gov/structure/cdd/wrpsb.cgi).ForevolutionaryrelatednesswithotherplantAACTs,aphylogenetictreewasbuilt.TheknowndeducedaminoacidAACTsequenceswereretrievedfromGenBankdatabaseandalignedwithMEGA4.0(Tamuraetal.2007).PhylogenetictreewasconstructedbyaNeighbor-Joiningmethod(SaitouandNei1987).Thepercentageofreplicatetreesinwhichtheassociatedtaxaclusteredtogetherinthebootstraptest(500replicates)isshownnexttothebranches(Felsenstein1985).TheevolutionarydistanceswerecomputedusingthePoissoncorrectionmethod(ZuckerkandlandPauling1965)andareintheunitsofthenumberofaminoacidsubstitutionspersite.TheAACTsequencesfromprokaryotesweretakenasanoutgroup.ExpressionofBmAACTinE.coliandPurificationofRecombinantProtein

ApairofprimerspETATBMF1andpETATBMR1(Table1)wasdesignedforcloningofBmAACTintoanexpressionvector,andthecodingregionwasamplifiedbyPCRtoincor-poratesuitablerestrictionenzymesites.Aftersequencecon-firmation,theresultingrecombinantplasmid(pET30b-BmAACT)wasmobilizedintoE.coliBL21(DE3)competentcells.AsinglecolonyofE.coliharboringpET30b-BmAACTwasinoculatedintoLBmediumcontainingkanamycin(50μg/mL)andgrowninashaking(200rpm)incubatorat37°Cuntiltheopticaldensity(OD600)reachedabout0.5–0.6.Forinductionofrecombinantproteinexpression,IPTGwasaddedtoafinalconcentrationof0.08mMandthecellswerefurtherincubatedat20°Cfor14h.Thecellswereharvestedbycentrifugationfor10minat5,000rpmand4°C.Thepelletwasresuspendedinlysisbuffer[50mMTris-HCl,pH8.0;300mMNaCl;5mMβ-mercaptoethanol(BME);10%Glyceroland1%TritonX-100]andsonicatedfor3min(10son/off)at75%amplitude.Lysozymewasaddedatafinalconcentrationof0.1mg/mLandafterincubationonicefor15min,centrifugedfor10minat10,000rpmand4°C.Supernatant(lysate)andpellet(inclusionbodiesdissolvedinureabuffer)wereanalyzedbySDS-PAGEandCoomassieBrilliantBlueG(Sigma,St.Louis,MO)staining.

RecombinantBmAACTproteinwaspurifiedbyaffinitychromatographyusingNi2+-NTAagarosebeads(Qiagen,Valencia,CA)andusedforinvitroenzymeassay.Inbrief,thecolumnwasequilibratedwithequilibrationbuffer(50mMTris-HCl,pH8.0;300mMNaCland20mMimidazole).Lysatewasloadedonequilibratedcolumnandincubatedfor2hat4–7°Conadancingshaker.Thebeadswereallowedtosettledownandwashedwith6–8columnvolumesofwashbuffer(50mMTris-HCl,pH8.0;300mMNaCland30mM

PlantMolBiolRep(2013)31:547–557

Imidazole),untilOD280reachestoabaseline.Finally,therecombinantBmAACTwaselutedwith2.5mLofelutionbuffer(50mMTris-HClpH8.0;300mMNaCland250mMimidazole)inthreefractions.ThepurifiedBmAACTwasfurthersubjectedtogelfiltrationchromatography(HiLoad16/60Superdex-75,GEHealthcare,Sweden)andelutedfrac-tionsin20mMphosphatebuffer(pH7.5)wereanalyzedonSDS-PAGEwithTris/glycinebuffer.ThegelwassilverstainedandproteinconcentrationwasdeterminedbyBradford(Bio-Rad)method(Bradford1976)usingbo-vineserumalbumin(BSA)asastandard.ThiolysisActivityofRecombinantBmAACTProtein:313nmAssay

Substrate,acetoacetyl-CoAandco-factorCoAwerepurchasedfromSigma.ThiolysisactivityofrecombinantBmAACTwasanalyzedbymonitoringthedecreaseinabsorbanceduetodisappearanceofMg2+-enolcomplexofacetoacetyl-CoAat313nm(Oeljeklausetal.2002).ThereactionwasmonitoredonLambda650spectrophotometer(PerkinElmer,Waltham,MA)over2min.Astandardassaymixturecontained150mMTris-HCl(pH8.9),30μMacetoacetyl-CoA,5mMMgCl2and100μMCoA.Thereactionwasstartedbyadding6.98nMofpurifiedBmAACTtothereactionmixture.Theapparentex-tinctioncoefficientofacetoacetyl-CoAwas14,328M?1cm?1.Oneunitofthiolaseactivitywasdefinedastheamountofthiolasesthatcatalyzethecleavageof1μmolacetoacetyl-CoAperminunderstandardconditions.EffectofMetalIonsonThiolysisActivity

ApartfromMgCl2atdifferentconcentrations(1–10mMat1mMintervaland25mM),someotherdivalentmetalions(CaCl2,ZnCl2andNiCl2)wereaddedtothestandardreac-tionmixture,andenzymeactivitywasmeasuredinthesamewayasmentionedabove.

DeterminationofKmandVmaxofRecombinantBmAACTKineticconstantsKmandkcatfortherecombinantpurifiedBmAACTweredeterminedbyusingacetoacetyl-CoA(0.001–0.1mM)andCoA(0.001–0.5mM).Theassayreac-tionswerecarriedoutintriplicatesunderstandardassayconditionsandvaluesforKmandkcatwerecalculatedfromMichaelis-Mentenplot(R200.990)byfittingthedatatothenon-linearregressionusingsoftwareSigmaPlot12.0.RelativeandTissueSpecificTranscriptQuantificationbyqRT-PCR

TheexpressionpatternofBmAACTwasanalyzedinsixdiffer-enttissuesincludingstem,leaf,root,sepal,pedicelandpetal.

PlantMolBiolRep(2013)31:547–557551

TotalRNAwasextractedfromalltissuesandcDNAwassynthesizedasmentionedabove.An18SrRNAwasusedasinternalcontrolfornormalizationofallthereactions.Primersusedfornormalization(18S-Fand18S-R)andexpressionanalysisofBmAACT(qAACTFandqAACTR)aregiveninTable1.BrilliantSYBRGreenQPCRmastermix(2XwithlowROX,Stratagene,LaJolla,CA)andStratageneMx3000Pinstrumentwereused.qRT-PCRreactionswerecarriedoutunderthefollowingconditions:1cycleof10minat94°C,followedby40cyclesof30sat94°C,30sat55°C,30sat72°C.AmplicondissociationcurvewasalsorecordedattheendofthePCRcycles.Allreactionswererunintriplicateandrepeatedtwice.RelativeexpressionofgenewasanalyzedusingcomparativeCtmethod(2?ΔΔCt).

Fig.1aSchematic

representationoffull-lengthBmAACTshowingpositionofprimersusedforPCRandexpectedampliconsize.bNu-cleotideanddeducedaminoacidsequencesofAACTfromBacopamonnierawith5′(95bp)and3′(300bp)UTRsfollowedbyapoly-Atail.Cat-alyticresidues(Cys99Cys391His361)andpoly-Asignalsite(AATAAA)arecircledandunderlined,respectively

Results

MolecularCloningandCharacterizationofFull-LengthBmAACTcDNA

Anapproximate770bppartialfragmentofBmAACTwasamplifiedbydegenerateprimerscATF2andcATR3.UpstreamanddownstreamofpartialBmAACTwereamplifiedbyRACEPCRwithgenespecificprimersandprimerssuppliedwithRACEkit,asmentionedin“Materialandmethods”.Approximately350bp5′RACEPCRproductwithprimers5′RACEATBMNstdR1andNUPwasclonedinthepGEM-Teasyvectorandsequenced.Similarly,approximately1,300bp3′RACEPCRproductwithprimers3′RACEATBMnested

F1

552PlantMolBiolRep(2013)31:547–557

and3′NGRPwasclonedandsequenced.Thefull-length(1,628bp)BmAACTgene(GenBankaccessionno.FJ947159)containedanORFof1,215bpflankedby95bp5′-UTRand300bp3′-UTR(Fig.1a).Thepoly(A)signalsite(AATAAA)wasfoundat31bpupstreamfromthepoly(A)tail.Onthebasisof5′and3′RACEsequences,extremesprimersweredesignedfromstartandstopcodonandORF(1,215bp)wasamplifiedbyPCRusingcDNAasatemplate.Theobtainedampliconwasclonedandsequenced(Fig.1b).Thededucedproteinwasfoundtobe405aawithanexpectedmolecularmassof41.32kDaandpIof6.15(ExPASyserver).ThededucedaminoacidsequenceofBmAACTwascom-paredwithdeducedaminoacidsequencesofAACTfromotherorganismsavailableintheNCBIdatabase.TheBmAACTsequenceexhibited90.6,90.0,89.1and83.9%identityand97.0,96.1,94.8and89.2%similaritywithPicrorhizakurrooaa,Camelliaoleifera,NicotianatabacumandSalviamiltiorrhiza,respectively.Twocystineandone

Fig.2aMultiplesequencealignmentsofdeducedaminoacidsequenceofbiosyntheticthiolasefromdifferentplants.GreenConservedaminoacidresidues,redthreeconservedaminoacidresidues(Cys99,Cys391andHis361)intheconserveddimerinterface.bConserveddomaindatabase(CDD)searchforBmAACTontheNCBIserver

histidineresidues,whicharehighlyconservedamongthethiolasesfromdifferentsources,areimportantforcatalyticactivity(Andersonetal.1990;Williamsetal.1992).ThesethreeresiduescorrespondtoCys99,Cys391andHis361inBmAACT(Fig.2ahighlightedinred).Abasicaminoacid(Asn,Thretc.)residuepresentatthelastpositionoftheactivesiteisspecificforAACT(Yangetal.1990).InBmAACT,Asn(N)residueispresentatthelastpositionoftheactivesite.ThroughtheNCBIconserveddomainsearch,BmAACTshowedaspecifichitagainstthiolaseandcondensingenzymesuperfamily.Thecatalyticactivesitesanddimerinterfaceregionswerealsopredicted(Fig.2b).

AphylogenetictreewasconstructedusingknownAACTsequencesfromabroadrangeoforganismsincludingdicots,monocots,yeastsandbacteria.ThedicotAACTswereclus-teredinonegroupwhereBmAACTwascloselyrelatedtothatofS.miltiorrhiza,withAACTofP.kurrooaandN.tabacumformingdistinctsubgroups(Fig.3

).

PlantMolBiolRep(2013)31:547–557Fig.3Phylogenetic

relationshipofBmAACTwithotherAACTs.Theevolutionarytreewasformedusingthe

ClustalX2programandMEGA4.0.2softwarewithneighbor-joining(NJ)method.Accessionnumbersaregiveninbrackets

553

ExpressionofBmAACTinE.coliandPurificationofRecombinantProtein

TheORF(1,215bp)ofBmAACTwascloneddirectionallyintoexpressionvectorpET30b(+)withNdeIandXhoIrestrictionsites.TherecombinantpET30b(+)plasmidhar-boringBmAACTwasover-expressedinE.coliBL21(DE3).ThelevelofexpressionandsolubilitywasoptimizedatdifferentIPTGconcentrations,temperatureanddurationofinduction,andanalyzedonSDS-PAGE(datanotshown).Itwasfoundthat0.08mMIPTGfor14hat20°Cgavemaximumover-expressedproteininthesolublefraction.Approximately43kDaproteinwaspurifiedbyaffinityandgelfiltrationchromatographyusingNi-NTAagarosebeadsandSuperdex-75,respectively.Theresultsofthepurifica-tionproceduresforrecombinantBmAACTaresummarizedinTable2.Thefinalpurificationresultedin62.22foldpurificationwithspecificactivityof56U/mgandrelativelygoodrecoveryof69.1%.Figure4showsSDS-PAGEanal-ysisofelutedfractionsateachstepwithasinglepurifiedbandofBmAACTinsilverstaining(Fig.4,lanes1and2).

ThiolysisActivity

Thiolysisactivitywasdeterminedbyusingacetoacetyl-CoAasasubstrateat313nm.TheactivityofrecombinantBmAACTwasmaximalat5mMMg2+concentrationandfurtherincreaseinconcentrationswereinhibitory.AtsameconcentrationofNi2+,Ca2+andZn2+theactivitywas69%,60%and28%,respectively,incomparisontoMg2+,whereactivitywasmaximumandconsideredas100%(Fig.5).KineticParametersofBmAACT

KineticconstantsforthethiolysisreactionsweredeterminedbyfittingtotheMichaelis-Mentenequationofinitialratedatafromexperimentsincludingvaryingconcentrationofacetoacetyl-CoA(0.001mM–0.1mM)atfixedconcentrationCoAandvaryingconcentrationofCoA(0.001mM–0.5mM)atfixedconcentrationofacetoacetyl-CoA.TheKmandVmaxforacetoacetyl-CoAwere20.67μMand96.21μmol/minrespectively(Fig.6),whiletheKmforCoAwas25.80μM.KineticparametersaresummarizedinTable3

.

Table2PurificationofrecombinantBacopamonnieraacetoacetyl-CoAthiolase(BmAACT)

PurificationstepsTotalvolume(ml)Totalprotein(mg)Totalactivity(U)Specificactivity(U/mgofprotein)FoldpurificationYield(%)CrudelysateNi2+-NTASuperdex-75

601510

9001510

molecular cloning molecular cloning Molecular Cloning, Biochemical Characterization_图文

810582560

0.938.856

143.1162.22

10071.8569.1

554Fig.4SDS-PAGEanalysisofcrudelysateandpurifiedrecombinantBmAACTfromEscherichiacoliBL21(DE3)cells.Lanes:MStandardmolecularweightmarker;1,2purified(elutedfractionsfromNi-NTAagarosebeadsandSuperdex-75respectively)recombinantBmAACT;3crudebacterial

lysate

Tissue-SpecificExpressionAnalysisofBmAACT

Todeterminethetissue-specificexpressionpatternofBmAACTinB.monniera,totalRNAwasextractedfromroot,stem,leaf,pedicel,sepalandpetal,andqRT-PCRwasperformed.InBacopa,BmAACTwasexpressedmoreinrootsandpetals,atlevelsapproximately5-and3-fold

Fig.5Effectofdifferentdivalentmetalionconcentrationsonthiolysis

activityPlantMolBiolRep(2013)31:547–557

Fig.6Effectofacetoacetyl-CoAconcentrationonthethiolysisactiv-ityofAACTfromB.monniera.KmandVmaxweredeterminedwithvariedconcentrationofacetoacetyl-CoA(0.001mM–0.1mM)andfixedconcentrationofCoA(0.1mM).Thedataisobtainedfromduplicateexperiments.InsetDoublereciprocalplot

higherthanpedicel,respectively.Incomparisontostem,approximately3-and2-foldhigherexpressionwasobservedinrootsandpetals,respectively.Ontheotherhand,2.7-and1.67-foldhigherexpressionwasmonitoredinrootsandpetals,respectively,comparedtosepal(Fig.7).

Discussion

Thiolasesplayanimportantroleinmanybiosyntheticanddegradativemetabolicpathways.Acetyl-CoAacetyltransferase(oracetoacetyl-CoAthiolase)catalyzestheformationofacetoacetyl-CoAandisinvolvedinbiosyntheticpath-wayssuchasPHBsynthesisinprokaryotes(Slateretal.1998)andisoprenoidbiosynthesisviatheMVApath-wayinplants(VollackandBach1996;Bachetal.1999).Bacosidesaretriterpenoidsaponins,presentasmainbioactivecompoundinthemedicinalherbB.monniera.Thisplantisusedmainlyinthetreatmentofanxietyandimprovingmemory(Singhand

Dhawan

Table3KineticconstantsofrecombinantBmAACTReactionparameterValue(mean±SE)aVmax(μmol/min)b96.21±1.90Km(μM)

Acetoacetyl-CoA20.67±0.79CoA

25.80±1.1Kcat(min?1)

2.30×105Kcat/Km(min?1μM?1)

11.13×103

a

Thevaluesshownarethemeans±SEofduplicateexperiments

b

Vmaxwascalculatedforacetoacetyl-CoAatfixedconcentrationofCoA(0.1mM)

PlantMolBiolRep(2013)31:547–557Fig.7Quantitativereal-timePCRanalysisofBmAACTmRNAtranscriptsindifferentfloralandvegetativeparts.Val-ueswerenormalizedbythe18SrRNAexpressionanddataarepresentedasmeans±SEfromthreeexperimentalreplicates

555

1997).AlthoughBacopahasbeeninvestigatedinvari-ouslaboratoriestodevelopanextractionprocedureforbacosidesandimproveitscontentbymeansofplanttissueculture,themolecularbasisofitsbiosynthesisisstillunexplored.

Inthispresentstudy,acetoacetyl-CoAthiolasefromB.monnierawasclonedandcharacterized.Full-lengthBmAACTwasisolatedbyRACE-PCRandBLASTanalysisshowedsignificanthomologywithreportedAACTsattheNCBIGenBankdatabase.Aconserveddomaindatabase(CDD)searchrevealedthatitbelongstothesuperfamilyofcondensingenzymesandshowedspecifichitswiththio-lase.TheconservedresiduesCys99,Cys391andHis361werealsofoundinBmAACTbyalignmentwithotherreportedthiolases(Fig.2a,b),whichisinagreementwithotherreports(Kursulaetal.2005;Andersonetal.1990;Williamsetal.1992;ModisandWierenga1999).PhylogeneticanalysisofBmAACTshowedthatitisrelatedcloselytoS.miltiorrhiza(Fig.3).InS.miltiorrhiza,micro-arrayanalysisidentifiedtheinvolvementofAACTgeneintanshinonebiosynthesisandexpressionprofilewascorrelatedwithsecondarymetaboliteaccumulation(Cuietal.2011).ThiolysisactivityofrecombinantBmAACTwasmaxi-mumat5mMMg2+concentrationandfurtherincreaseinconcentrationwasinhibitory,withactivityof76%at10mMMg2+(60%at25mMMg2+,datanotshown)(KimandCopeland1997).Theactivitywith5mMNi2+andCa2+wasintherangeof60–70%ofthatwith5mMMg2+.InthecaseofNi2+,adrasticdecreaseinactivitywasobserved,becomingalmostnegligibleat10mMconcentra-tion,whichmaybeduetonon-specificbindingofNi2+totheactivesitehistidineresidueofBmAACT.Inthecaseof

Ca2+andNi2+ions,approximately73%activitywasob-servedatconcentrationsof3mMand6mM,respectively.InthepresenceofZn2+at5mMconcentration,theactivitywasapproximately28%ofthatwith5mMMg2+andnegligiblewithafurtherincreaseinZn2+concentration(Fig.5).

Hyperbolicsubstratekineticswereobservedforthethi-olysisreactionofrecombinantBmAACTwheneitheracetoacetyl-CoAorCoAconcentrationswerevaried.BmAACTshowsaslightlyhighersubstrateaffinityforacetoacetyl-CoA(Km020.67μM)ascomparedtoCoA(Km025.80μM).Previousenzymekineticstudiesonthio-lasesfromvarioussourcesshowedCoAasapreferentialsubstrateoveracetoacetyl-CoA(MengandLi2006;Hedletal.2002;ModisandWierenga2000),whileafewreportssuggestedacetoacetyl-CoAasafavoredsubstrate(Suzukietal.1987;KimandCopeland1997).Inplantssuchaslikesunflower,glyoxysomalacetoacetyl-CoAthiolasefromcotyledonsdisplayedaKmof11μMandkcatof2.164×103min?1foracetoacetyl-CoAatfixedCoA(240μM)concen-tration(Oeljeklausetal.2002).However,inourcase,Kmvaluesforbothacetoacetyl-CoAandCoAareinthesameorderofmagnitudeandexhibitedhighercatalyticefficiency(kcat2.30×105min?1)aswellasspecificityconstant(kcat/Km11.13×103min?1μM?1)comparedtoearlierreports.

Tissue-specificexpressionanalysisofBmAACTbyqRT-PCRinalltestedtissuesshowedlowestexpressioninped-icel.Higherexpressionswereobservedinrootandpetals(approximatelyfive-andthree-foldhigherthanpedicel,respectively)followedbysepals,stemandleaftissues(Fig.7).InArabidopsis,theAACT2geneaccumulatesmoreinseedling,rootsandinflorescencesascomparedto

stem

556andleaves(Ahumadaetal.2008).AsimilarpatternoftranscriptaccumulationwasobservedinArabidopsisforsomeotherpathwaygenessuchasHMG-CoAreductase,MVAkinase,farnesyldiphosphatesynthaseandsqualenesynthase(Enjutoetal.1994;Cunilleraetal.1996;Kribiietal.1997;Lluchetal.2000).ThissuggeststhatBmAACTisinvolvedinbiosyntheticpathways.

Inconclusion,thebiosyntheticthiolasegenefromB.mon-niera(BmAACT)hasbeencloned,over-expressedinE.coliandpurifiedbydifferentchromatographictechniques.ThecatalyticefficiencyofBmAACTwasfoundtobeexception-allyhighascomparedtoAACTsfromothersources.qRT-PCRanalysisrevealedthattheexpressionprofileofBmAACTisdistributedmoreorlessthroughoutallplantparts,withhighertranscriptaccumulationinrootsandinflorescenceascomparedtoothertissues.TheroleofAACTsinisoprenoidbiosynthesisinplantsisstillnotveryclear.InitiallyAACTwasnotconsideredasaregulatoryenzymeintheisoprenoidpathway,butrecentreportsfromArabidopsis,SalviaandMedicagoshowedthatthisgeneplaysanimportantroleinisoprenoidbiosynthesis.Furthermore,theexpressionprofilewascorrelatedwithsecondarymetaboliteaccumulationandabioticstressresistance.ThewiderangeofpharmaceuticalandmedicinalapplicationsoftriterpenoidsandalkaloidsitselfexplainsimportanceofBacopainmedicinalchemistry.FurtherstudiesareplannedtoinvestigatethefunctionalroleofBmACCTinplantsecondarymetabolismbydevelopingtransgeniclineswithimprovedtriterpenoidcontentanditsadaptabilitytothriveindifferentabioticstressconditions.

AcknowledgmentThisworkwassupportedbyCouncilofScientificandIndustrialResearch-NetworkProject(CSIR-NWP),NewDelhi,India.

References

AhumadaI,CairóA,HemmerlinA,GonzálezV,PaterakiI,BachTJ,

Rodríguez-ConcepciónM,CamposN,BoronatA(2008)Charac-terizationofthegenefamilyencodingacetoacetyl-CoAthiolaseinArabidopsis.FunctPlantBiol35:1100–1111

AndersonVE,BahnsonBJ,WlassicsID,WalshCT(1990)Thereaction

ofacetyldithio-CoA,areadilyenolizedanalogofacetyl-CoAwiththiolasefromZoogloearamigera.JBiolChem265:6255–6261BachTJ,BoronatA,CamposN,FerrerA,VollackKU(1999)Meval-onatebiosynthesisinplants.CritRevBiochemMol34:107–122BasyuniM,KinjoY,BabaS,ShinzatoN,IwasakiH,SiregarEBM,Oku

H(2011)Isolationofsaltstresstolerancegenesfromrootsofmangroveplant,RhizophorastylosaGriff.,usingPCR-basedsup-pressionsubtractivehybridization.PlantMolBiolRep29:533–543BradfordMM(1976)Arapidandsensitivemethodforthequantitation

ofmicrogramquantitiesofproteinutilizingtheprincipleofprotein-dyebinding.AnalBiochem72:248–254

BuhaescuI,IzzedineH(2007)Mevalonatepathway:areviewof

clinicalandtherapeuticalimplications.ClinBiochem40:575–584CarrieC,MurchaMW,MillarAH,SmithSM,WhelanJ(2007)Nine

3-ketoacyl-CoAthiolases(KATs)andacetoacetyl-CoAthiolases(ACATs)encodedbyfivegenesinArabidopsisthalianaare

PlantMolBiolRep(2013)31:547–557

targetedeithertoperoxisomesorcytosolbutnottomitochondria.PlantMolBiol63:97–108

ChakravartyAK,SarkarT,MasudaK,ShiojimaK,NakaneT,Kawahara

N(2001)BacopasideIandII:twopseudojujubogeninglycosidesfromBacopamonniera.Phytochemistry58:553–556

ChatterjeeN,RastogiRP,DharML(1963)Chemicalexaminationof

BacopamonnieraWettst:partI.Isolationofchemicalconstitu-ents.IndJChem1:212–215

ChopraRN,ChopraIC,VermaBS,NayarSL(1969)Glossaryof

Indianmedicinalplants.CouncilofScientificandIndustrialRe-search(CSIR),NewDelhi

CuiG,HuangL,TangX,ZhaoJ(2011)Candidategenesinvolvedin

tanshinonebiosynthesisinhairyrootsofSalviamiltiorrhizarevealedbycDNAmicroarray.MolBiolRep38:2471–2478CunilleraN,ArroM,DelourmeD,KarstF,BoronatA,FerrerA(1996)

Arabidopsisthalianacontainstwodifferentiallyexpressedfarnesyl-diphosphatesynthasegenes.JBiolChem271:7774–7780

DyerJH,MainaA,GomezID,CadetM,OeljeklausS,SchiedelAC

(2009)Cloning,expressionandpurificationofanacetoacetylCoAthiolasefromsunflowercotyledon.IntJBiolSci5:736–744EnjutoM,BalcellsL,CamposN,CaellesC,ArroM,BoronatA(1994)

Arabidopsisthalianacontainstwodifferentiallyexpressed3-hydroxy-3-methylglutaryl-CoAreductasegenes,whichencodemicrosomalformsoftheenzyme.ProcNatlAcadSciUSA91:927–931

FelsensteinJ(1985)Confidencelimitsonphylogenies:anapproach

usingthebootstrap.Evolution39:783–791

HeX,TianJ,YangL,HuangY,ZhaoB,ZhouC,GeR,ShenY,Huang

Z(2012)Overexpressingaglycogensynthasekinasegenefromwheat,TaGSK1,enhancessalttoleranceintransgenicArabidop-sis.PlantMolBiolRep30:807–816

HedlM,SutherlinA,WildingEI,MazzullaM,McDevittD,LaneP,

BurgnerJW2nd,LehnbeuterKR,StauffacherCV,GwynnMN,RodwellVW(2002)Enterococcusfaecalisacetoacetyl-coenzymeAthiolase/3-hydroxy-3-methylglutaryl-coenzymeAreductase,adual-functionproteinofisopentenyldiphosphatebiosynthesis.JBacteriol184:2116–2122

HunterWN(2007)Thenon-mevalonatepathwayofisoprenoidpre-cursorbiosynthesis.JBiolChem282:21573–21577

IgualJC,Gonzalez-BoschC,DopazoJ,Perez-OrtinJE(1992)Phylo-geneticanalysisofthethiolasefamily.Implicationsfortheevo-lutionaryoriginofperoxisomes.JMolEvol35:147–155

JenkinsLS,NunnWD(1987)Geneticandmolecularcharacterization

ofthegenesinvolvedinshort-chainfattyaciddegradationinEscherichiacoli:theatosystem.JBacteriol169:42–52

KimSA,CopelandL(1997)AcetylcoenzymeAacetyltransferaseof

Rhizobiumsp.(Cicer)StrainCC1192.ApplEnvironMicrob63:3432–3437

KirbyJ,KeaslingJD(2009)Biosynthesisofplantisoprenoids:

perspectivesformicrobialengineering.AnnuRevPlantBiol60:335–355

KribiiR,ArroM,DelArcoA,GonzalezV,BalcellsL,DelourmeD,

FerrerA,KarstF,BoronatA(1997)CloningandcharacterizationoftheArabidopsisthalianaSQS1geneencodingsqualenesyn-thaseinvolvementoftheC-terminalregionoftheenzymeinthechannelingofsqualenethroughthesterolpathway.EurJBiochem249:61–69

KursulaP,SikkilaH,FukaoT,KondoN,WierengaRK(2005)High

resolutioncrystalstructuresofhumancytosolicthiolase(CT):acomparisonoftheactivesitesofhumanCT,bacterialthiolase,andbacterialKASI.JMolBiol347:189–201

LangeBM,RujanT,MartinW,CroteauR(2000)Isoprenoidbiosyn-thesis:theevolutionoftwoancientanddistinctpathwaysacrossgenomes.ProcNatlAcadSciUSA97:13172–13177

LauleO,FurholzA,ChangHS,ZhuT,WangX,HeifetzPB,Gruissem

W,LangeM(2003)Crosstalkbetweencytosolicandplastidial

PlantMolBiolRep(2013)31:547–557

pathwaysofisoprenoidbiosynthesisinArabidopsisthaliana.ProcNatlAcadSciUSA100:6866–6871

LluchMA,MasferrerA,ArroM,BoronatA,FerrerA(2000)Molec-ularcloningandexpressionanalysisofthemevalonatekinasegenefromArabidopsisthaliana.PlantMolBiol42:365–376MengY,LiJ(2006)Cloning,expressionandcharacterizationofa

thiolasegenefromClostridiumpasteurianum.BiotechnolLett28:1227–1232

ModisY,WierengaRK(1999)Abiosyntheticthiolaseincomplexwith

areactionintermediate:thecrystalstructureprovidesnewinsightsintothecatalyticmechanism.Structure7:1279–1290

ModisY,WierengaRK(2000)Crystallographicanalysisofthereac-tionpathwayofZoogloearamigerabiosyntheticthiolase.JMolBiol297:1171–1182

OeljeklausS,FischerK,GerhardtB(2002)Glyoxysomalacetoacetyl-CoAthiolaseand3-oxoacyl-CoAthiolasefromsunflowercoty-ledons.Planta214:597–607

QuGZ,ZangL,XilinH,GaoC,ZhengT,LiKL(2012)Co-transferof

LEAandbZipgenesfromTamarixconfersadditivesaltandosmoticstresstoleranceintransgenictobacco.PlantMolBiolRep30:512–518

RastogiS,PalR,KulshreshthaDK(1994)BacosideA3-atriterpenoid

saponinfromBacopamonniera.Phytochemistry36:133–137SaitouN,NeiM(1987)Theneighbor-joiningmethod:anewmethod

forreconstructingphylogenetictrees.MolBiolEvol4:406–425SandoT,TakaokaC,MukaiY,YamashitaA,HattoriM,OgasawaraN,

FukusakiE,KobayashiA(2008)Cloningandcharacterizationofmevalonatepathwaygenesinanaturalrubberproducingplant,Heveabrasiliensis.BiosciBiotechnolBiochem72:2049–2060SetoH,WatanabeH,FabianiL(1996)Simultaneousoperationofthe

mevalonateandnon-mevalonatepathwaysinthebiosynthesisofisopentenyldiphosphateinStreptomycesaeriouvifer.TetrahedronLett37:7979–7982

SinghHK,DhawanBN(1997)Neuropsychopharmacologicaleffects

oftheAyurvedicnootropicBacopamonnieraLinn.(Brahmi).IndianJPharmacol29:359–365

SivarajanVV,BalchandranI(1994)Ayurvedicdrugsandtheirplant

sources.OxfordandIBH,NewDelhi

SlaterSC,VoigeWH,DennisDE(1998)Cloningandexpressionin

EscherichiacolioftheAlcaligeneseutrophusH16poly-beta-hydroxybutyratebiosyntheticpathway.JBacteriol170:4431–4436

557

SotoG,StritzlerM,LisiC,AllevaK,PaganoME,ArdilaF,Mozzicafreddo

M,CuccioloniM,AngelettiM,AyubND(2011)Acetoacetyl-CoAthiolaseregulatesthemevalonatepathwayduringabioticstressadaptation.JExpBot62:5699–5711

SteinbuchelA,HeinS(2001)Biochemicalandmolecularbasisof

microbialsynthesisofpolyhydroxyalkanoatesinmicroorganisms.AdvBiochemEngBiotechnol71:81–123

SuzukiF,ZahlerWL,EmerichDW(1987)Acetoacetyl-CoAthiolase

ofBradyrhizobiumjaponicumbacteroids:purificationandprop-erties.ArchBiochemBiophys254:272–281

SuzukiM,NakagawaS,KamideY,KobayashiK,OhyamaK,

HashinokuchiH,KiuchiR,SaitoK,MuranakaT,NagataN(2009)Completeblockageofthemevalonatepathwayresultsinmalegametophytelethality.JExpBot60:2055–2064

TamuraK,DudleyJ,NeiM,KumarS(2007)MEGA4:Molecular

EvolutionaryGeneticsAnalysis(MEGA)softwareversion4.0.MolBiolEvol24:1596–1599

TanakaT,ShimaY,OgawaN,NagayamaK,YoshidaT,OhmachiT

(2010)Expression,identificationandpurificationofDictyoste-liumacetoacetyl-CoAthiolaseexpressedinEscherichiacoli.IntJBiolSci7:9–17

VollackKU,BachTJ(1996)CloningofacDNAencoding

cytosolicacetoacetyl-coenzymeAthiolasefromradishbyfunctionalexpressioninSaccharomycescerevisiae.PlantPhysiol111:1097–1107

WilliamsSF,PalmerMA,PeoplesOP,WalshCT,SinskeyAJ,Masamune

S(1992)BiosyntheticthiolasefromZoogloearamigera.Mutagen-esisoftheputativeactive-sitebaseCys-378toSer-378changesthepartitioningoftheacetylS-enzymeintermediate.JBiolChem267:16041–16043

YangSY,YangXY,Healy-LouieG,SchulzH,ElzingaM(1990)

NucleotidesequenceofthefadAgene.Primarystructureof3-ketoacyl-coenzymeAthiolasefromEscherichiacoliandthestructuralorganizationofthefadABoperon.JBiolChem265:10424–10429

YangG,ZhouR,TangT,ChenX,OuyangJ,HeL,LiW,ChenS,Guo

M,LiX,ZhongC,ShiS(2011)GeneexpressionprofilesinresponsetosaltstressinHibiscustiliaceus.PlantMolBiolRep29:609–617

ZuckerkandlE,PaulingL(1965)Evolutionarydivergenceandconver-genceinproteins.In:BrysonV,VogelHJ(eds)Evolvinggenesandproteins.Academic,NewYork,pp97–166


百度搜索“爱华网”,专业资料,生活学习,尽在爱华网  

爱华网本文地址 » http://www.aihuau.com/a/367451/93444896011.html

更多阅读

100道门2013攻略100关图文详解:1 第1~10关

100道门2013攻略100关图文详解:[1]第1~10关——简介100道门2013是安卓平台一款新颖的解密益智游戏,你需要在房间中发现线索,然后把门打开进入下一个房间。每一个房间的主题都不一样,将给你带来百次不同的游戏体验!100道门2013攻略100关

《机械迷城》第七关图文攻略 迷城的国度图文攻略

出门来,右边河太远,过不了,只能向左走.左走来发现前面漏水了。机器人最怕水,正好旁边有一位打伞的机器人大妈,和她交谈,得知想要她的伞必须要用狗来换,向回走,发现狗正躲在对面的角落里找东西吃,想抓到狗就要先把它引出来《机械迷城》第七关

雷区里的工具怎么做?图文攻略 samorost3图文攻略

雷区里的工具怎么做?图文攻略——简介魔兽世界雷区里的工具怎么做?斯巴索克的工具怎么拿?本文为你一一道来。雷区里的工具怎么做?图文攻略——工具/原料78级左右角色一个基础装备若干雷区里的工具怎么做?图文攻略——方法/步骤雷区里的

怎么让两台电脑共享上网超详细图文 黑暗之魂图文详细攻略

怎么让两台电脑共享上网【超详细图文】——简介window7系统下实现一条网线两台具有无线网卡功能的笔记本电脑共享上网,具体的步骤如下,假设存在电脑A与B怎么让两台电脑共享上网【超详细图文】——工具/原料一条网线 两台具有无线网卡

声明:《molecular cloning molecular cloning Molecular Cloning, Biochemical Characterization_图文》为网友佯装执着分享!如侵犯到您的合法权益请联系我们删除