小学数学典型应用题
小学数学中把含有数量关系的实际问题用语言或文字叙述出来,这样所形成的题目叫做应用题。任何一道应用题都由两部分构成。第一部分是已知条件(简称条件),第二部分是所求问题(简称问题)。应用题的条件和问题,组成了应用题的结构。
应用题可分为一般应用题与典型应用题。
没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。
题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题。这本资料主要研究以下30类典型应用题:
1、归一问题
2、归总问题
3、和差问题
4、和倍问题
5、差倍问题
6、倍比问题
7、相遇问题
8、追及问题
9、植树问题
10、年龄问题
11、行船问题
12、列车问题
13、时钟问题
14、盈亏问题
15、工程问题
16、正反比例问题
17、按比例分配
18、百分数问题
19、“牛吃草”问题
20、鸡兔同笼问题
21、方阵问题
22、商品利润问题
23、存款利率问题
24、溶液浓度问题
25、构图布数问题
26、幻方问题
27、抽屉原则问题
28、公约公倍问题
29、最值问题
30、列方程问题
1 归一问题
【含义】 在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。
归一,指的是解题思路。归一应用题的特点是先求出一份是多少。归一应用题有正归一应用题和反归一应用题。在求出一份是多少的基础上,再求出几份是多产,这类应用题叫做正归一应用题;在求出一份是多少的基础上,再求出有这样的几份,这类应用题叫做反归一应用题。根据“求一份是多少”的步骤的多少,归一应用题也可分为一次归一应用题,用一步就能求出“一份是多少”的归一应用题;两次归一应用题,用两步到处才能求出“一份是多少”的归一应用题。
解答这类应用题的关键是求出一份的数量,
【数量关系】 总量÷份数=1份数量
1份数量×所占份数=所求几份的数量
另一总量÷(总量÷份数)=所求份数
【解题思路和方法】 先求出单一量,以单一量为标准,求出所要求的数量。
例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?
解
(1)买1支铅笔多少钱? 0.6÷5=0.12(元)
(2)买16支铅笔需要多少钱?0.12×16=1.92(元)
列成综合算式 0.6÷5×16=0.12×16=1.92(元)
答:需要1.92元。
例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?
解
(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷)
(2)5台拖拉机6天耕地多少公顷? 10×5×6=300(公顷)
列成综合算式 90÷3÷3×5×6=10×30=300(公顷)
答:5台拖拉机6 天耕地300公顷。
例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?
解
(1)1辆汽车1次能运多少吨钢材? 100÷5÷4=5(吨)
(2)7辆汽车1次能运多少吨钢材? 5×7=35(吨)
(3)105吨钢材7辆汽车需要运几次? 105÷35=3(次)
列成综合算式 105÷(100÷5÷4×7)=3(次)
答:需要运3次。
例4、 24辆卡车一次能运货物192吨,现在增加同样的卡车6辆,一次能运货物多少吨?
解:先求1辆卡车一次能运货物多少吨,再求增加6辆后,能运货物多少吨。
这是一道正归一应用题。192÷24×(24+6)=240吨
例5、 张师傅计划加工552个零件。前5天加工零件345个,照这样计算,这批零件还要几天加工完?(这是一道反归一应用题。)
例6、 3台磨粉机4小时可以加工小麦2184千克。照这样计算,5台磨粉机6小时可加工小麦多少千克?(这是一道两次正归一应用题。)
例7、 一个机械厂和4台机床4.5小时可以生产零件720个。照这样计算,再增加4台同样的机床生产1600个零件,需要多少小时?(这是两次反归一应用题。)
解:要先求一台机床一小时可以生产零件多少个,再求需要多少小时。
1600÷[720÷4÷4.5×(4+4)]=5小时
例8、 一个修路队计划修路126米,原计划安排7个工人6天修完。后来又增加了54米的任务,并要求在
6天完工。如果每个工人每天工作量一定,需要增加多少工人才如期完工?
解:先求每人每天的工作量,再求现在要修路多少米,然后求要5天完工需要工人多少人,最后求要增加多少人。
(126+54)÷(126÷7÷6×5)–7=5人
例9、用两台水泵抽水。先用小水泵抽6小时,后用大水泵抽8小时,共抽水624立方米。已知小水泵5小时的抽水量等于大水泵2小时的抽水量。求大小水泵每小时各抽水多少立方米?
解法一:
根据“小水泵5小时的抽水量等于大水泵2小时的抽水量”,可以求出大水泵1小时的抽水量相当于小水泵几小时的抽水量。把不同的工作效率转化成某一种水泵的工作效率。
大水泵1小时的抽水量相当于小水泵几小时的抽水量?5÷2=2.5小时
大水泵8小时的抽水量相当于小水泵几小时的抽水量2.5×8=20小时
小水泵1小时能抽水多少立方米?642÷(6+20)=24立方米
大水泵1小时能抽水多少立方米?24×2.5=60立方米
解法二:
小水泵1小时的抽水量相当于大水泵几小时的抽水量2÷5=0.4小时
小水泵6小时的抽水量相当于大水泵几小时的抽水量0.4×6=2.4小时
大水泵1小时能抽水多少立方米?624÷(8+2.4)=60立方米
小水泵1小时能抽水多少立方米?60×0.4=24立方米
例10、 东方小学买了一批粉笔,原计划29个班可用40天,实际用了10天后,有10个班外出,剩下的粉笔,够有校的班级用多少天?
解:先求这批粉笔够一个班用多少天,剩下的粉笔够一个班用多少天,然后求够在校班用多少天。 这批粉笔够一个班用多少天40×20=800天
剩下的粉笔够一个班用多少天800–10×20=600天
剩下几个班20–10=10个
剩下的粉笔够10个班用多少天600÷10=60天
列综合算式:(40×20–10×20) ÷(20–10) =60天
例11、 甲乙两个工人加工一批零件,甲4.5小时可加工18个,乙1.6小时可加工8个,两个人同时工作了27小时,只完成任务的一半,这批零件有多少个?
解:先分别求甲乙各加工一个零件所需的时间,再求出工作了27小时,甲乙两工人各加工了零件多少个,然后求出一半任务的零件个数,最后求出这批零件的个数。
[27÷(4.5÷18)+27÷(1.6÷8)]×2=486个
2 归总问题
【含义】 解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
【数量关系】 1份数量×份数=总量
总量÷1份数量=份数
总量÷另一份数=另一每份数量
【解题思路和方法】 先求出总数量,再根据题意得出所求的数量。
例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套?
解
(1)这批布总共有多少米? 3.2×791=2531.2(米)
(2)现在可以做多少套? 2531.2÷2.8=904(套)
列成综合算式 3.2×791÷2.8=904(套)
答:现在可以做904套。
例2 小华每天读24页书,12天读完了《红岩》一书。小明每天读36页书,几天可以读完《红岩》? 解
(1)《红岩》这本书总共多少页? 24×12=288(页)
(2)小明几天可以读完《红岩》? 288÷36=8(天)
列成综合算式 24×12÷36=8(天)
答:小明8天可以读完《红岩》。
例3 食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?
解 (1)这批蔬菜共有多少千克? 50×30=1500(千克)
(2)这批蔬菜可以吃多少天? 1500÷(50+10)=25(天)
列成综合算式 50×30÷(50+10)=1500÷60=25(天)
答:这批蔬菜可以吃25天。
例1、 一个工程队修一条公路,原计划每天修450米。80天完成。现在要求提前20天完成,平均每天应修多少米?

450×80÷(80–20)=600米
例2、 家具厂生产一批小农具,原计划每天生产120件,28天完成任务;实际每天多生产了20件,可以几天完成任务?
要求可以提前几天,先要求出实际生产了多少天。要求实际生产了多少天,要先求这批小农具一共有多少件。 28–120×28÷(120+20)=4天
例3、 装运一批粮食,原计划用每辆装24袋的汽车9辆,15次可以运完;现在改用每辆可装30袋的汽车6辆来运,几次可以运完?
24×9×15÷30÷6=18次
例4、 修整一条水渠,原计划由8人修,每天工作7.5小时,6天完成任务,由于急需灌水,增加了2人,要求4天完成,每天要工作几小时?一个工人一小时的工作量,叫做一个“工时”。
要求每天要工作几小时,先要求修整条水渠的工时总量。
修整条水渠的总工时=7.5×8×6=360工时
参加修整条水渠的有8+2=10人
要求 4天完成,每天要工作 360÷4÷10=9小时
列综合算式:7.5×8×6÷4÷(8+2) =9小时
例5、 一项工程,预计30人15天可以完成任务。后来工作的天后,又增加3人。每人工作效率相同,这样可以提前几天完成任务?一个工人工作一天,叫做一个“工作日”。
要求可以提前几天完成,先要求得这项工程的总工作量,即总工作日。
这项工程的总工作量是15×30=450工作日
4天完成了4×30=120工作日
剩下多少个工作日450–120=330工作日
剩下的要工作多少天?330÷(30+3)=10天
可以提前几天完成?15–(4+10)=1天
综合15–[(15×30–4×30)÷(30+3)+4]=1天
例6、 一个农场计划28天完成收割任务,由于每天多收割7公顷,结果18天就完成 了任务。实际每天收割多少公顷?
要求实际每天收割多少公顷,要先求原计划每天收割多少公顷。要求原计划每天收割多少公顷,要先求18天多收割了多少公顷。18天多收割的就是原计划(28–18)天的收割任务。
爱华网www.aIhUaU.com网友整理上传,为您提供最全的知识大全,期待您的分享,转载请注明出处。