应用题是决定小学孩子数学成绩的关键,也是拉分的关键。我为大家归纳了以下30类典型应用题,都是小升初的重考点!文章颇长,但对小学孩子成绩的提高非常有益,希望家长们耐心看完,以便教孩子学习。
由于应用题考点太多,我分为3篇发,这是前10个考点文章家长必看:小升初30类典型应用题总结,短期提高孩子数学成绩!今天法第11-20个考点,希望家长认真阅读,辅导孩子提高学习成绩,小升初考个好学校!
十一、行船问题
【含义】 行船问题也就是与航行有关的问题。解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。
【数量关系】 (顺水速度+逆水速度)÷2=船速
(顺水速度-逆水速度)÷2=水速
顺水速=船速×2-逆水速=逆水速+水速×2
逆水速=船速×2-顺水速=顺水速-水速×2
【解题思路和方法】 大多数情况可以直接利用数量关系的公式。
十二、 列车问题
【含义】 这是与列车行驶有关的一些问题,解答时要注意列车车身的长度。
【数量关系】 火车过桥:过桥时间=(车长+桥长)÷车速
火车追及: 追及时间=(甲车长+乙车长+距离)
÷(甲车速-乙车速)
火车相遇: 相遇时间=(甲车长+乙车长+距离)
÷(甲车速+乙车速)
【解题思路和方法】 大多数情况可以直接利用数量关系的公式。
十三、时钟问题
【含义】 就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等。时钟问题可与追及问题相类比。
【数量关系】 分针的速度是时针的12倍,
二者的速度差为11/12。
通常按追及问题来对待,也可以按差倍问题来计算。
【解题思路和方法】 变通为“追及问题”后可以直接利用公式。
十四、 盈亏问题
【含义】 根据一定的人数,分配一定的物品,在两次分配中,一次有余(盈),一次不足(亏),或两次都有余,或两次都不足,求人数或物品数,这类应用题叫做盈亏问题。
【数量关系】 一般地说,在两次分配中,如果一次盈,一次亏,则有:
参加分配总人数=(盈+亏)÷分配差
如果两次都盈或都亏,则有:
参加分配总人数=(大盈-小盈)÷分配差
参加分配总人数=(大亏-小亏)÷分配差
【解题思路和方法】 大多数情况可以直接利用数量关系的公式。
十五、工程问题
【含义】 工程问题主要研究工作量、工作效率和工作时间三者之间的关系。这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。
【数量关系】 解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。
工作量=工作效率×工作时间
工作时间=工作量÷工作效率
工作时间=总工作量÷(甲工作效率+乙工作效率)
【解题思路和方法】 变通后可以利用上述数量关系的公式。
十六、正反比例问题
【含义】 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定(即商一定),那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。正比例应用题是正比例意义和解比例等知识的综合运用。
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。反比例应用题是反比例的意义和解比例等知识的综合运用。
【数量关系】 判断正比例或反比例关系是解这类应用题的关键。许多典型应用题都可以转化为正反比例问题去解决,而且比较简捷。
【解题思路和方法】 解决这类问题的重要方法是:把分率(倍数)转化为比,应用比和比例的性质去解应用题。
正反比例问题与前面讲过的倍比问题基本类似。
‘十七、 按比例分配问题
【含义】 所谓按比例分配,就是把一个数按照一定的比分成若干份。这类题的已知条件一般有两种形式:一是用比或连比的形式反映各部分占总数量的份数,另一种是直接给出份数。
【数量关系】 从条件看,已知总量和几个部分量的比;从问题看,求几个部分量各是多少。总份数=比的前后项之和
【解题思路和方法】 先把各部分量的比转化为各占总量的几分之几,把比的前后项相加求出总份数,再求各部分占总量的几分之几(以总份数作分母,比的前后项分别作分子),再按照求一个数的几分之几是多少的计算方法,分别求出各部分量的值。
十八、 百分数问题
【含义】 百分数是表示一个数是另一个数的百分之几的数。百分数是一种特殊的分数。分数常常可以通分、约分,而百分数则无需;分数既可以表示“率”,也可以表示“量”,而百分数只能表示“率”;分数的分子、分母必须是自然数,而百分数的分子可以是小数;百分数有一个专门的记号“%”。
在实际中和常用到“百分点”这个概念,一个百分点就是1%,两个百分点就是2%。
【数量关系】 掌握“百分数”、“标准量”“比较量”三者之间的数量关系:
百分数=比较量÷标准量
标准量=比较量÷百分数
【解题思路和方法】 一般有三种基本类型:
(1)求一个数是另一个数的百分之几;
(2)已知一个数,求它的百分之几是多少;
(3)已知一个数的百分之几是多少,求这个数。
十九、“牛吃草”问题
【含义】 “牛吃草”问题是大科学家牛顿提出的问题,也叫“牛顿问题”。这类问题的特点在于要考虑草边吃边长这个因素。
【数量关系】 草总量=原有草量+草每天生长量×天数
【解题思路和方法】 解这类题的关键是求出草每天的生长量。
二十、 鸡兔同笼问题
【含义】 这是古典的算术问题。已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
【数量关系】第一鸡兔同笼问题:
假设全都是鸡,则有
兔数=(实际脚数-2×鸡兔总数)÷(4-2)
假设全都是兔,则有
鸡数=(4×鸡兔总数-实际脚数)÷(4-2)
第二鸡兔同笼问题:
假设全都是鸡,则有
兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)
假设全都是兔,则有
鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)
【解题思路和方法】 解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。这类问题也叫置换问题。通过先假设,再置换,使问题得到解决。
其实,文章中给孩子归纳总结的30个类型,其实都应该是孩子自己的工作,但大部分孩子都做不到,但班上成绩顶尖的孩子往往却能做得非常好,不信,叫孩子借学霸们的笔记本来看看。
归纳总结的能力在孩子12年学习生涯中都是很重要的,尤其是上初中以后,年级越高,对孩子自身的学习能力要求就越高,如果孩子不具备这种能力,那么学习起来相当吃力,甚至吃力不讨好!所以家长们要注意培养孩子归纳总结以及记忆能力。