中考数学答题技巧:构造辅助圆
对于在已知条件的线上找点与已知点构成一定的角的问题,如果能根据题目的题设和结论,构造出符合题意特征的辅助圆,即把题目中的固定角转化为圆的圆周角问题,就能使问题得以顺利解决,这种方法利用数形结合,使代数与几何等知识相互渗透,综合应用,它不但能较好的达到解题的目的,还有利于培养学生分析问题的能力。请看下面的两个例题:
例1:(06东营)如图,B是线段AC的中点,过点C的直线l与AC成60°的角,在直线l上取一点P,使得∠APB=30°,则满足条件的点P的个数是
(A)3个 (B)2个 (C)1个 (D)不存在
分析:要在直线l上找点P使∠APB=30°,可以构造以AB为边作等边三角形ABO,则∠AOB=60°,然后以O为圆心,AB为半径,作圆O,如图,∵△ABO为等边三角形∴OB∥l,∴点O到l的距离d
解:此题如果以AB为边作等边△ABO,再以点O为圆心,AB为半径作圆交直线l与点P1、P2,∵∠AOB=60°∴∠AP1B=30°,∠AP2B=30°所以满足条件的点P的个数是两个,分别为P1、P2。
例2:(06陕西)如图,矩形ABCG()与矩形CDEF全等,点B、C、D在同一条直线上,的顶点P在线段BD上移动,使为直角的点P的个数是 【 C 】
A.0 B.1 C.2 D.3
分析:要使∠APE=90°,则需要以AE为直径作圆,如果此圆与线段BD相交,有几个交点,则使∠APE为直角的点P的个数就有几个,通过作图及圆心到直线的距离可知,以AE为直径的圆与BD只有两个交点,所以使∠APE为直角的点P的个数是两个。
解:此题连接AE、AC、CE,因为矩形ABCG与矩形CDEF全等,所以Rt△ACG≌Rt△CEF则∠ACE=90°,所以点C为满足条件的P点之一。取AE的中点O,然后以点O为圆心,以OA为半径作圆O,因为点O到BC的距离小于OC,所以圆O与BD有两个交点C、P,∵AE为直径,∴∠ACE=90°,∠APE=90°。∴使∠APE为直角的点的个数是两个。
综上所述,我们可以把某些与定点成定角的问题转化为圆周角问题,转化为直线与圆的位置关系问题,则能轻易加以解决。
百度搜索“爱华网”,专业资料、生活学习,尽在爱华网!