概述
发动机自动启停就是在车辆行驶过程中临时停车(例如等红灯)的时候,自动熄火。当需要继续前进的时候,系统自动重启发动机的一套系统。它是通过在传统发动机上植入具有怠速起停功能的加强电机,使汽车在满足怠速停车条件时,发动机完全熄灭不工作。当整车再需要启动前进时,怠速起停电机系统迅速响应驾驶员启动命令,快速启动发动机,瞬时衔接,从而大大减少油耗和废气排放。
发动机自动启停系统是这几年来发展最迅猛的汽车环保技术,特别适用于走走停停的城市路况。据统计到2012年,欧洲新上市的车中将有50%配备起步停车系统。该系统通过电脑判断车辆的状态,例如车辆在红灯、堵塞等停滞状态,电脑可以控制发动机自动停止运行,并且停止运行阶段,并不影响车内空调、音响等设备的使用。通过此项技术在一般路况条件下可以节约5%的燃油,而在拥堵路段中最高可以节约15%左右的燃油。据权威机构测试,此项技术的使用将使一辆普通轿车每年节省10%至15%的燃料。
使用方法
行驶中只要直接踩制动踏板,车辆完全停止大概两秒钟后发动机就会自动熄火,一直踩着制动踏板,发动机就会保持关闭。只要一松开刹车,或者转动方向盘,发动机又会马上自动点火,立即又可以踩油门起步,整个过程都处于D档状态。
拓展阅读
1.频繁的启动是否会增加发动机的磨损?
发动机的磨损有一半以上来自于冷启动,而启停系统的工作也是有一些条件限制的。车辆在冷启动或者发动机水温以及机油温度在没有达到正常值时,即使该功能被激活,发动机也是不会自动启停的。
而在热启动的时候,由于发动机零件之间的配合间隙和机油润滑都进入了理想状态,所以发动机的磨损是极小的,而此时机油所起到的作用就十分重要,对于搭载启停系统的车辆也应该使用更高等级的机油。同时厂家会对发动机的润滑系统加以改进,比如在活塞处增加机油孔道或机油喷嘴等,以达到在启动的瞬间为发动机充分润滑的目的。
2.启停系统工作时有哪些限制条件?
启停系统进入工作状态是不能以牺牲车辆其他系统正常工作为代价的,比如在蓄电池电量低于限定值、车辆空调系统在进行除雾工作、刹车系统内压力下降到某一点之下、车辆出现向前或者向后“溜车”等情况时,启停系统不会熄灭发动机,如果发动机熄火后也会毫无延迟地重新启动。
3、自动启停系统是否只用于高档车?
采用自动启停功能的车辆,起动电机和蓄电池等相关元件都已进行了优化,由于减少了停车时间,发动机的怠速磨损,所以可以使发动机的使用寿命变得更长。
但自动启停系统不仅仅是安装在豪华车型中,该项技术已经应用很广泛,如奥迪全系车型、高尔夫蓝驱版等,另外一些自主品牌车型也开始纷纷搭载自动启停系统,如长安逸动、吉利帝豪EC7、长城C30等
涡轮增压
概述
涡轮增压,是一种利用内燃机(Internal Combustion Engine)运作所产生的废气驱动空气压缩机(Air-compressor)的技术。与超级增压器(机械增压器, Super-Charger)功能相若,两者都可增加进入内燃机或锅炉的空气流量,从而令机器效率提升。常见用于汽车引擎中,透过利用排出废气的热量及流量,涡轮增压器能提升内燃机的马力输出。
增压目的
涡轮增压的主要作用就是提高发动机进气量,从而提高发动机的功率和扭矩,让车子更有劲。一台发动机装上涡轮增压器后,其最大功率与未装增压器的时候相比可以增加40%甚至更高。这样也就意味着同样一台的发动机在经过增压之后能够产生更大的功率。就拿我们最常见的1.8T涡轮增压发动机来说,经过增压之后,动力可以达到2.4L发动机的水平,但是耗油量却比1.8发动机并不高多少,在另外一个层面上来说就是提高燃油经济性和降低尾气排放。
负面影响
不过在经过了增压之后,发动机在工作时候的压力和温度都大大升高,因此发动机寿命会比同样排量没有经过增压的发动机要短,而且机械性能、润滑性能都会受到影响,这样也在一定程度上限制了涡轮增压技术在发动机上的应用。
增压原理
最早的涡轮增压器用于跑车或方程式赛车上的,这样在那些发动机排量受到限制的赛车比赛里面,发动机就能够获得更大的功率。
众所周知,发动机是靠燃料在汽缸内燃烧做功来产生功率的,由于输入的燃料量受到吸入汽缸内空气量的限制,因此发动机所产生的功率也会受到限制,如果发动机的运行性能已处于最佳状态,再增加输出功率只能通过压缩更多的空气进入汽缸来增加燃料量,从而提高燃烧做功能力。因此在目前的技术条件下,涡轮增压器是唯一能使发动机在工作效率不变的情况下增加输出功率的机械装置。
大家可能会觉得涡轮增压装置非常复杂,其实并不复杂,涡轮增压装置主要是由涡轮室和增压器组成。首先是涡轮室的进气口与发动机排气歧管相连,排气口则接在排气管上。然后增压器的进气口与空气滤清器管道相连,排气口接在进气歧管上,最后涡轮和叶轮分别装在涡轮室和增压器内,二者同轴刚性联接。这样一个整体的涡轮增压装置就做好,你的发动机就好像电脑CPU一样被“超频”了。
我们平常所说的涡轮增压装置其实就是一种空气压缩机,通过压缩空气来增加发动机的进气量,一般来说,涡轮增压都是利用发动机排出的废气惯性冲力来推动涡轮室内的涡轮,涡轮又带动同轴的叶轮,叶轮压送由空气滤清器管道送来的空气,使之增压进入汽缸。当发动机转速增快,废气排出速度与涡轮转速也同步增快,叶轮就压缩更多的空气进入汽缸,空气的压力和密度增大可以燃烧更多的燃料,相应增加燃料量和调整一下发动机的转速,就可以增加发动机的输出功率了。
增压类型
机械增压系统:这个装置安装在发动机上并由皮带与发动机曲轴相连接,从发动机输出轴获得动力来驱动增压器的转子旋转,从而将空气增压吹到进气岐道里。其优点是涡轮转速和发动机相同,因此没有滞后现象,动力输出非常流畅。但是由于装在发动机转动轴里面,因此还是消耗了部分动力,增压出来的效果并不高。
气波增压系统:利用高压废气的脉冲气波迫使空气压缩。这种系统增压性能好、加速性好但是整个装置比较笨重,不太适合安装在体积较小的轿车里面。
废气涡轮增压系统:这就是我们平时最常见的涡轮增压装置了,增压器与发动机无任何机械联系,实际上是一种空气压缩机,通过压缩空气来增加进气量。它是利用发动机排出的废气惯性冲力来推动涡轮室内的涡轮,涡轮又带动同轴的叶轮,叶轮压送由空气滤清器管道送来的空气,使之增压进入气缸。当发动机转速增快,废气排出速度与涡轮转速也同步增快,叶轮就压缩更多的空气进入气缸,空气的压力和密度增大可以燃烧更多的燃料,相应增加燃料量就可以增加发动机的输出功率。一般而言,加装废气涡轮增压器后的发动机功率及扭矩要增大20%—30%。但是废气涡轮增压器技术也有其必须注意的地方,那就是泵轮和涡轮由一根轴相连,也就是转子,发动机排出的废气驱动泵轮,泵轮带动涡轮旋转,涡轮转动后给进气系统增压。增压器安装在发动机的排气一侧,所以增压器的工作温度很高,而且增压器在工作时转子的转速非常高,可达到每分钟十几万转,如此高的转速和温度使得常见的机械滚针或滚珠轴承无法为转子工作,因此涡轮增压器普遍采用全浮动轴承,由机油来进行润滑,还有冷却液为增压器进行冷却。
复合增压系统:即废气涡轮增压和机械增压并用,机械增压有助于低转速时的扭力输出,但是高转速时功率输出有限;而废气涡轮增压在高转速时拥有强大的功率输出,但低转速时则力不从心。发动机的设计师们于是就设想把机械增压和涡轮增压结合在一起,来解决两种技术各自的不足,同时解决低速扭矩和高速功率输出的问题。这种装置在大功率柴油机上采用比较多,汽油机上采用双增压系统(复合增压系统)的车型还比较少,大众的1.4 TSI发动机(这款发动机兼顾了低速扭力输出和高速功率输出。在低转速时,由机械增压提供大部分的增压压力,在1 500rpm时,两个增压器同时提供增压压力。随着转速的提高,涡轮增压器能使发动机获得更大的功率,与此同时,机械增压器的增压压力逐渐降低。机械增压通过电磁离合器控制,它与水泵集合在一起。在转速超过3500rpm时,由涡轮增压器提供所有的增压压力,此时机械增压器在电磁离合器的作用下完全与发动机分离,防止消耗发动机功率)采用了这一系统。其发动机输出功率大、燃油消耗率低、噪声小,只是结构太复杂,技术含量高,维修保养不容易,因此很难普及。
涡轮增压发动机
涡轮增压发动机是依靠涡轮增压器来加大发动机进气量的一种发动机,涡轮增压器(Turbo)实际上就是一个空气压缩机。它是利用发动机排出的废气作为动力来推动涡轮室内的涡轮(位于排气道内),涡轮又带动同轴的叶轮位于进气道内,叶轮就压缩由空气滤清器管道送来的新鲜空气,再送入气缸。当发动机转速加快,废气排出速度与涡轮转速也同步加快,空气压缩程度就得以加大,发动机的进气量就相应地得到增加,就可以增加发动机的输出功率了。
涡轮增压发动机的最大优点是它可在不增加发动机排量的基础上,大幅度提高发动机的功率和扭矩。一台发动机装上涡轮增压器后,其输出的最大功率与未装增压器相比,可增加大约40%甚至更多。
可变气门
概述
汽车发动机气门正时的机构和技术,也叫连续可变气门正时系统,当今高性能发动机普遍配备该系统。该系统通过配备的控制及执行系统,对发动机凸轮的相位或者气门升程进行调节,从而达到优化发动机配气过程的目的。
可变气门正时技术几乎已成为当今发动机的标准配置,为了进一步挖掘传统内燃机的潜力,工程人员又在此基础上研发出可变气门升程技术,当二者有效的结合起来时,则为发动机在各种工况和转速下提供了更高的进、排气效率。提升动力的同时,也降低了油耗水平。
原理
因为高转速下与低转速下,气门的正时角对发动机经济性和动力的影响是明显的,高转速下可以充分利用进气惯性而提高进气量和扫气效率,所以气门早开晚闭,低转速反之,现在的发动机大多有这个技术。
起源
活塞式四冲程引擎都由进气、压缩、做功、排气4个冲程完成,我们关注的是气门开启程度对引擎进气的问题。气缸进气的基本原理是“负压”,也就是气缸内外的气体压强差。在引擎低速运转时,气门的开启程度切不可过大,这样容易造成气缸内外压力均衡,负压减小,从而进气不够充分,对于气门的工作而言,这个“小程度开启”需要短行程的方式加以控制;而高速恰恰相反,转速动辄5000rpm,倘若气门依然羞羞答答不肯打开,引擎的进气必然受阻,所以,我们需要长行程的气门升程。往往,工程师们既要兼顾引擎在低速区的扭矩特性,又想榨取高速区的功率特性,只能采取一条“折中”的思路,到头来引擎高速没功率,低速缺扭矩……
所以在这样的情况下,就需要一种对气门升程进行调节的装置,也就是我们要说的“可变气门正时技术”。该技术既能保证低速高扭矩,又能获得高速高功率,对引擎而言是一个极大的突破。
80年代,诸多企业开始投入了可变气门正时的研究,1989年本田首次发布了“可变气门配气相位和气门升程电子控制系统”,英文全称“Variable Valve Timing and Valve Life Electronic Control System,也就是我们常见的VTEC。此后,各家企业不断发展该技术,到今天已经非常成熟,丰田也开发了VVT-i,保时捷开发了Variocam,现代开发了DVVT……几乎每家企业都有了自己的可变气门正时技术。一系列可变气门技术虽然商品名各异,但其设计思想却极为相似。
配气相位机构的原理和作用
我们都知道,发动机的配气相位机构负责向气缸提供汽油燃烧做功所必须的新鲜空气,并将燃烧后的废气排出,这一套动作可以看做是人体吸气和呼气的过程。从工作原理上讲,配气相位机构的主要功能是按照一定的时限来开启和关闭各气缸的进、排气门,从而实现发动机气缸换气补给的整个过程。
那么气门的原理和作用又应该怎么理解呢?我们可以将发动机的气门比作是一扇门,门开启的大小和时间长短,决定了进出的人流量。门开启的角度越大,开启的时间越长,进出的人流量越大,反之亦然。同样的道理用于发动机上,就产生了气门升程和正时的概念。气门升程就好象门开启的角度,气门正时就好象门开启的时间。以立体的思维观点看问题,角度加时间就是一个空间的大小,它也决定了在单位时间内的进、排气量。
可变气门正时和升程技术可以使发动机的“呼吸”更为顺畅自然
发动机的气门通常由凸轮轴带动,对于没有可变气门正时技术的普通发动机而言,进、排气们开闭的时间都是固定的,但是这种固定不变的气门正时却很难顾及到发动机在不同转速和工况时的需要。前面说过发动机进、排气的过程犹如人体的呼吸,不过固定不变的“呼吸”节奏却阻碍了发动机效率的提升。
如果你参加过长跑比赛,就能深刻体会到呼吸节奏的把握对体能发挥的重要性——太急促或刻意的屏息都可能增加疲劳感,使奔跑欲望降低。所以,我们在长跑比赛时往往需要不断按照奔跑步伐来调整呼吸频率,以便时刻为身体提供充足的氧气。对于汽车发动机而言,这个道理同样适用。可变气门正时和升程技术就是为了让发动机在各种负荷和转速下自由调整“呼吸”,从而提升动力表现,提高燃烧效率。
最小转弯半径
名词解释:
最小转弯半径
是指当转向盘转到极限位置,汽车以最低稳定车速转向行驶时,外侧转向轮的中心平面在支承平面上滚过的轨迹圆半径。它在很大程度上表征了汽车能够通过狭窄弯曲地带或绕过不可越过的障碍物的能力。转弯半径越小,汽车的机动性能越好。
车漆自修复技术
名词解释:
车漆自修复技术属于日产,最先进入中国是随着英菲尼迪新M系上市,其称为“自动愈合车漆(Scratch Shield Paint)”,是一种能减轻浅划痕伤害的车漆技术,无需任何外力介入,对于诸如在洗车、越野时或者日常划伤一类的轻微伤害,车漆具有自动修复功能。
车漆自修复技术其实是一种特殊的涂层保护剂。这层保护剂是一种高密度的透明合成树脂,以网状结构涂抹在汽车油漆的外层。这种涂层相比于目前市面上的漆面保护剂拥有更好的弹性,也更加强韧。这将使汽车的表层更难被划伤,即使出现划痕,超强力的网状树脂也会缓慢地回弹,直到填平表面上的擦痕。该保护涂层的厚度同标准油漆涂层相当,这意味着它能修复到达那一深度的擦痕。只要不发生断裂性损伤,最长只需要一周就可以恢复如初。同时,由于这种涂层的存在,水渍和污垢不易附着,日常清洗时直接用水清洗即可。
车漆自修复技术对轻微的小擦痕或者中度有一定作用,那种伤及表漆的划伤是无法自动修复的。在使用中,如果使用热水辅助,会加速其效果。此外目前这样的油漆设计仅用于深色车漆上。
车漆自修复技术的代表车型:英菲尼迪G、M、FX系列等。
燃油添加剂
燃油添加剂,是为了弥补燃油在某些性质上的缺陷并赋予燃油一些新的优良特性,在燃油中要加入的功能性物质。其添加量以微量为特征,从百万分之几到百分之几。
燃油在发动机内的工作原理:
经过滤清器除掉其中杂质,经过油泵送到化油器或喷射装置以雾化的形式进入燃烧时,通过燃烧交给发动机热量,发动机再将热量转化成机械功。前面与燃油燃烧的充分性相联系,叫燃烧效率;整体上是将燃油的化学能转化为热能进而转化为机械能的过程。在燃油燃烧做功过程中,通常根据压力变化的发展特征将燃烧过程分为三个阶段:
诱导期:从电火花点燃到形成火焰中心,燃烧时间约占全部过程的15%。
明显燃烧期:从火焰中心形成到火焰传播至燃烧末端,明显燃烧期对发动机功率和经济性起决定作用的。
补燃期:燃油中残余油及不完全产物,继诱导期和明显燃烧期之后,从气缸压力下降到燃烧结束阶段。补燃期长,会使发动机经济效益降低。
燃油品质的高低主要是指燃油在这三个过程中的表现好坏,及其对最后输出机械功的影响。添加剂就是能够有效调整这三个过程的物质,对燃油消耗、尾气排放、动力性能至关重要。再好的燃料,在不同情况的使用过程中也会有不完全燃烧的现象,尤其是随着高压、电喷车的问世,燃烧均匀性、积碳、胶质和爆震的问题成为影响发动机输出功多少的关键因素。如果使用了具有燃烧调整和清洁作用的添加剂,就可以延缓这种现象,让燃料充分燃烧和热机机械效率提高。而目前中国的燃油品质与国际上还有很大差异,并且在国际标准燃油里也提倡添加功能性物质。因此,在燃油中加入一些添加剂就有了必要,它可以更好地满足燃油的经济性、排放性、动力性,达到环保节能的作用。
燃油添加剂总体分类:清洁类燃油添加剂、处理燃油类添加剂(1、辛烷值提升剂 2、动力燃油催化剂 3、拔水剂 4、柴油抗冻剂)、综合类燃油添加剂。
燃油添加剂的好处
1.养车 运行中养护,不解体维修,避免了由于积碳过多,通过拆解方式给发动机造成的巨大伤害。
2.省油 使用添加了清净剂的汽油对车主来说还有一大好处是省油。
3.环保 一路行总部的试验表明,使用燃油添加剂后的汽车可以减少汽车排放20%的碳氢化合物、24%的一氧化碳和13%的氮氧化物,可以使一辆汽车在其使用寿命中减少1.1吨的废气排放。
最大涉水深度
最大涉水深度即轮胎触地点与发动机进气口之间的距离,英文名称Wattiefe。最大涉水深度是指在安全行驶条件下时,能涉水通过的最大深度,也就是安全深度。同时也是评价汽车越野通过性的重要指标,最大涉水深度越大,其涉水能力越强。
大体上来说,汽车的涉水深度由车辆底盘的高度所决定,也就是在车型的参数配置表中“离地间隙”一项(有些车型会给出”最大涉水深度”)。离地间隙越大,底盘越高,您在通过积水路面时的安全系数就越高。就底盘高度而言,越野车,SUV和近几年热门的CROSS车型的优势显而易见。但面对大多数低底盘的紧凑级车和小型车,通过积水路面时应以车辆进气口的位置为标尺。
涉水时如果进气口低于水位,将会把水吸入发动机的汽缸,由于水不像空气那样能够压缩,它就会对发动机的机械结构 (连杆、活塞、曲轴等等)造成严重的损坏。所以涉水深度不能超过发动机进气口的高度。你也可以通过加装涉水喉来实现发动机进气口高度也就是最大涉水深度的提升。
扭力梁式悬挂
扭力梁式悬挂也称为扭力梁式非独立悬架,是汽车后悬挂装置类型的一种,用以减小车辆的摇晃,保持车辆的平稳。在扭力梁式悬挂的结构中,两个车轮之间没有硬轴直接相连,而是通过一根扭力梁进行连接,扭力梁可以在一定范围内扭转。但如果一个车轮遇到非平整路面时,扭力梁仍然会对另一侧车轮产生一定的干涉,严格上说,扭力梁式悬挂属于半独立式悬挂。
扭力梁式悬挂相对于独立式悬挂来说舒适性要差一些,不过结构简单可靠,也不占空间,而且维修费用也比独立悬挂低,所以扭力梁悬挂多用在小型车和紧凑型车的后桥上。
虽然扭力梁式悬挂是不利于差速器与后驱动半轴的布置,但是也有一部分四驱的SUV车型装配扭力梁式悬挂,如:纳智捷大7 SUV、海外版SX4四驱和最近上市的别克encore。
纳智捷大7的复合式扭力梁后悬挂,减振器与减振弹簧采用分离式设计,驱动半轴从减振弹簧和减振器之间穿过与驱动轮相连。同时扭力梁为了避开差速器与驱动半轴,位置向下偏移,这样会导致后桥的离地间隙相对变小。
纳智捷后悬的扭力梁设计靠近后车轮轴线,接近整体桥,具有很好的承载能力。
SX4的扭力梁式后悬挂也是采用振簧分离式布置,后驱动半轴从中间穿过,与纳智捷大7不同的是,SX4的扭力梁的设计偏离车轮轴线,扭力梁位于差速器的上方,后桥的离地间隙要大。
别克encore的后悬挂采用扭力梁式悬挂,其布置方式跟海外版的SX4差不多,减振器与减振弹簧采用分离式布置,半轴从两者之间穿过与后驱动轮相连,扭力梁位于差速器与驱动半轴的上方。
多连杆
多连杆独立悬挂,可分为多连杆前悬挂和多连杆后悬挂系统。其中前悬挂一般为3连杆或4连杆式独立悬挂;后悬挂则一般为4连杆或5连杆式后悬挂系统,其中5连杆式后悬挂应用较为广泛。
多连杆悬挂结构想对复杂,材料成本、研发实验成本以及制造成本远高于其它类型的的悬挂、而且其占用空间大,中小型车出于成本和空间考虑极少使用这种悬挂。
但多连杆式悬挂舒适性能是所有悬挂中最好的,操控性能也和双叉臂式悬挂难分伯仲,高档轿车由于空间充裕、且注重舒适性能何操控稳定性,所以大多使用多连杆悬,可以说多连杆悬挂是高档轿车的绝佳搭档。
国内前后悬挂均采用多连杆的车型有:北京奔驰E级轿车、华晨宝马的3系及5系轿车、一汽大众奥迪A4及A6L;采用多连杆前悬挂的车型有上海大众的帕萨特领域;采用多连杆后悬挂的有长安福特福克斯、一汽大众速腾、广州本田雅阁、上海通用君越、一汽丰田皇冠及锐志、一汽马自达6、东南汽车三菱戈蓝等。
麦弗逊
麦弗逊悬挂(MacPhersan),是现在非常常见的一种独立悬挂形式,大多应用在车辆的前轮。简单地说,麦弗逊式悬挂的主要结构即是由螺旋弹簧加上减震器以及A字下摆臂组成,减震器可以避免螺旋弹簧受力时向前、后、左、右偏移的现象,限制弹簧只能作上下方向的振动,并且可以通过对减震器的行程、阻尼以及搭配不同硬度的螺旋弹簧对悬挂性能进行调校。
麦弗逊悬挂最大的特点就是体积比较小,有利于对比较紧凑的发动机舱布局。不过也正是由于结构简单,对侧向不能提供足够的支撑力度,因此转向侧倾以及刹车点头现象比较明显。下面就为大家详细的介绍一下麦弗逊悬挂的构造以及性能表现。
麦弗逊悬挂的历史
麦弗逊式悬挂是应前置发动机前轮驱动(ff)车型的出现而诞生的。ff车型不仅要求发动机要横向放置,而且还要增加变速箱、差速器、驱动机构、转向机,以往的前悬挂空间不得不加以压缩并大幅删掉,因此工程师才设计出节省空间、成本低的麦弗逊式悬挂,以符合汽车需求。
麦弗逊(Macphersan)是这套悬挂系统发明者的名字,他是美国伊利诺伊州人,1891年生。大学毕业后他曾在欧洲搞了多年的航空发动机,并于1924年加入通用汽车公司的工程中心。30年代,通用的雪佛兰公司想设计一种真正的小型汽车,总设计师就是麦弗逊。他对设计小型轿车非常感兴趣,目标是将这种四座轿车的质量控制在0.9吨以内,轴距控制在2.74米以内,设计的关键是悬挂。麦弗逊一改当时盛行的板簧与扭杆弹簧的前悬挂方式,创造性地将减振器和螺旋弹簧组合在一起,装在前轴上。实践证明这种悬架形式的构造简单,占用空间小,而且操纵性很好。后来,麦弗逊跳槽到福特,1950年福特在英国的子公司生产的两款车,是世界上首次使用麦弗逊悬架的商品车。
麦弗逊悬挂的构造
麦弗逊式悬挂由螺旋弹簧、减震器、A字形下摆臂组成,绝大部分车型还会加上横向稳定杆。麦弗逊式独立悬架的物理结构为支柱式减震器兼作主销,承受来自于车身抖动和地面冲击的上下预应力,转向节(也可说车轮,因为转向节作用于车轮)则沿着主销转动;此外,其主销可摆动,特点是主销位置和前轮定位角随车轮的上下跳动而变化,且前轮定位变化小,拥有良好的行驶稳定性。
在麦弗逊式独立悬架中,支柱式减震器除具备减震效果外,还要担负起支撑车身的作用,所以它的结构必须紧凑且刚度足够,并且套上螺旋弹簧后还要能减震,而弹簧与减震器一起,构成了一个可以上下运动的滑柱。还有一个关键部件---A字型下摆臂,它的作用是为车轮提供横向支撑力,并能承受来自前后方向的预应力。车辆在运动过程中,车轮所承受的所有方向的冲击力量就要靠支柱减震器和A字型下托臂这两个部件承担。
麦弗逊悬挂的优缺点
主要优点
麦弗逊悬挂拥有良好的响应性和操控性,而且结构简单,占用空间小,成本低,重量轻,适合布置大型发动机以及装配在小型车身上。
其他优点
麦弗逊式悬架的其他优点是:
a. 由于具有较大的有效距离C,作用在车身连接点E和D处的力较小;
b. 点G和N之间只有很小的距离D;
c. 弹簧行程大;
d. 省去了三处支承;
e. 易于构造前部车底板形状。
缺点
行驶在不平路面时,车轮容易自动转向,故驾驶者必须用力保持方向盘的方向,当受到剧烈冲击时,滑柱易造成弯曲,因而影响转向性能。稳定性差,抗侧倾和制动点头能力弱,增加稳定杆以后有所缓解但无法从根本上解决问题,耐用性不高,减震器容易漏油需要定期更换
可变悬挂
可变悬挂是指可以手动或车辆自动改变悬挂的高低或软硬来适应不同路面的行驶需求。
关于悬挂的问题是消费者比较关心的一个因素,因为它直接影响到车辆的舒适性和操控性。然而以当今的科技水平来说,普通的弹簧避震很难做到两全其美。在人们不断在汽车领域追求完美的过程中,可变悬挂系统诞生了。可变悬挂的作用是通过手动或车辆自动改变悬挂的高低/软硬以适应不同路面的行驶需求。
空气悬挂
技术特点:底盘可升降,应用车型广泛
技术不足:可靠性不如螺旋弹簧
应用车型:奔驰S350、奥迪A8L、保时捷卡宴等
其实提到主动悬挂系统,我们首先想到的,并且应用最广泛的自然是空气悬挂,而在系统组成上,它主要是由控制电脑、空气泵、储压罐、气动前后减震器和空气分配器等部件。主要用途就是控制车身的水平运动,调节车身的水平高度以及调节减震器的软硬程度。
通常来讲,装备空气式可调悬挂的车型前轮和后轮的附近都会设有离地距离传感器,按离地距离传感器的输出信号,行车电脑会判断出车身高度变化,再控制空气压缩机和排气阀门,使弹簧自动压缩或伸长,从而降低或升高底盘离地间隙,以增加高速车身稳定性或复杂路况的通过性。
而在日常调节中,空气悬挂会有几个状态。1、保持状态。当车辆被举升器举起,离开地面时,空气悬挂系统将关闭相关的电磁阀,同时电脑记忆车身高度,使车辆落地后保持原来高度:2、正常状态,即发动机运转状态。行车过程中,若车身高度变化超过一定范围,空气悬挂系统将每隔一段时间调整车身高度:3、唤醒状态。当空气悬挂系统被遥控钥匙、车门开关或行李厢盖开关唤醒后,系统将通过车身水平传感器检查车身高度。如果车身高度低于正常高度一定程度,储气罐将提供压力使车身升至正常高度。同时,空气悬挂可以调节减震器软硬度,包括软态、正常及硬态3个状态(也有标注成舒适、普通、运动三个模式等),驾驶者可以通过车内的控制钮进行控制。
当然,相比传统悬挂,由于空气式可调悬挂结构较为复杂,其出现故障的几率和频率也会高于螺旋弹簧悬挂系统,而用空气作为调整底盘高度的动力来源,相关部件的密封性也是一个问题,另外,如果频繁地调整底盘高度,还有可能造成气泵系统局部过热,会大大缩短气泵的使用寿命。当然,随着技术水平的不断提高,很多问题都得到了良好的解决,同时,应用的车型也越来越广泛。
电磁可调悬挂
技术特点:技术先进,系统响应迅速。
技术不足:成本较高,多应用于豪华车型上,稳定性有待检验。
应用车型:奥迪TT、凯迪拉克SLS、凯迪拉克CTS
所谓电磁式可调悬挂就是利用电磁反应来实现汽车底盘高度升降变化的一种悬挂方式,它可以在极短的时间内作出反应。来抑制振动,保持车身稳定。特别是在一些相对极端的环境下,比如高速行车中突然遇到颠簸,电磁悬挂的优势就会非常明显,它的反应速度可以比传统悬挂快5倍。
在系统组成方面,电磁悬挂系统是由行车电脑、车轮位移传感器、电磁液压杆和直筒减震器组成。在每个车轮和车身连接处都有一个车轮位移传感器,传感器与行车电脑相连,行车电脑又与电磁液压杆和直筒减震器相连。电磁减震器的奥秘在于其中充当阻尼介质的电磁油液,这种电磁液中是由合成的碳氢化物和细微的铁粒组成。而这些金属粒子在普通状态下,会杂乱无章的分布在液体中,而随着电磁场的产生及磁通量的改变,它们就会排列成一定结构,粘滞系数也随之改变,进而改变阻尼。而电磁场的强度只需要改变电流即可控制。也就是说这套系统的控制只需要改变电流就能够达到控制阻尼系数的目的。
其实这个减震过程,主要就是在车辆行驶到颠簸路面,引起车轮跳动的时候,传感器会迅速将信号传至控制系统,控制系统发出相应指令,将电信号发送到各个减震器的电子线圈,使电流的运动产生磁场,在磁场的作用下,电磁液的粘度得到改变,从而达到控制车身、减震的目的。而如此复杂的过程实际上只是瞬间完成。举个例子说当你读完以上这几行文字时,这个过程已经可能已经完成了3000次。(每秒可达1000次)
液压可调悬挂
技术特点:底盘可升降,采用液压油耐用性更好
技术不足:技术水平相对老旧,反应速度偏慢
应用车型:雪铁龙C5(海外) 雪铁龙C6
液压式可调悬挂。顾名思义,就是利用液压变化来调节车身的悬挂系统。它的核心部件是一个内置式电子液压集成模块,可以根据车辆行驶速度对减震器的伸缩频率和程度加以调整。另外,由于不同车型的重心分配有所同,因而通常要在汽车重心的附近安装纵向横向加速度横摆陀螺传感器,用来采集车身震动、车轮跳动以及倾斜状态等信号,这些信号经过行车电脑运算,并把相应执行信号传递给四个执行油缸,并以增减液压油的方式来改变离地间隙等。
与空气式可调悬挂系统类似,液压式可调悬挂也可以进行底盘升高或自动调节。举个例子说,我们以老款雪铁龙C5车型上的这套名为的液压式可调悬挂来做个比方。它在停车时,其车身高度自动降为最低,车发动后恢复车身高度。在车辆行驶状态下,城市道路及车速低于110公里/小时时,会采用标准高度;当车速超过110公里/小时时,电子液压集成块控制车身头部降低15毫米,车尾部降低11毫米。降低重心可以改善车辆行驶稳定性,减小迎风最大截面和降低对侧风的敏感度,同时降低油耗;当车速低于90公里/小时后车身恢复到标准高度;路况不好时,电子液压集成块控制车身升高,以最大限度保证减震行程长度与舒适性。
电子液力式可调悬挂
技术特点:控制精准,反应速度快
技术不足:稳定性有待检验
应用车型:别克新君越、欧宝雅特(海外)
电子液力式可调悬挂也称连续减震控制系统(CDC),它也是主动悬挂的一种。这套系统可以独立控制每个车轮的悬挂阻尼。其电子感应器能根据读取路况信息,适时对减震器作出调整,使之在软硬间频繁切换。从而更迅速准确地控制车身的侧倾、俯仰以及横摆跳动。提高车辆高速行驶和过弯的稳定性。
而与较为传统的液压式可调悬挂不同,电子液力式悬挂对电子设备的依赖性要更强。核心部件由中央控制单元、CDC减震器、车身加速度传感器、车轮加速度传感器以及CDC控制阀构成,其中减震器是基于传统的液压减震器构造,减震器内注有油液,有内外两个腔室,油液可通过联通两个腔室间的孔隙流动,在车轮颠簸时,减振器内的活塞便会在套筒内上下移动,其腔内的油液便在活塞的往复运动的作用下在两个腔室间往返流动。油液分子间的相互摩擦以及油液与孔壁之间的摩擦对活塞的运动形成阻力,将震动的动能转化为热量,热量通过减震器外壳散发到空气中,这样就实现了减震器的“减震”过程。
话又说回来,CDC并不算非常先进的悬挂技术,只能说应用在合资品牌中型车上并不多见。其实在2004年,这套系统就已经装备到了欧宝雅特车型上。换言之,CDC至少在5年之前就应用到了量产车型上。而到2008年,在通用的全新中型车平台--Epsilon II平台上,欧宝的Insignia(新君威的原型车)诞生了,它所应用的Flex Ride自适应底盘系统,就是基于CDC系统而来的。