四年级数学鸡兔同笼 数学;鸡兔同笼(附答案)

鸡兔同笼

        鸡兔同笼问题,其实是小学奥数中的一个专题,其中包含的题目从简到难,层次较多。

掌握解答此类问题的基本方法,同时也让思维进一步得到锻炼,一种是假设法,一种是列方程。在这两种方法里,任意选择一种。

例:鸡兔同笼,头20个,脚60只,问鸡兔各几只?

假设法:假设全是鸡。则一共有脚:20×2=40(只)

        这个数比实际的脚数少20只:60-40=20(只)

(想:为什么脚会比实际的只数少20只呢?因为这20只实际上并不全是鸡,其中有一些是兔,我们把4只脚的兔看成了鸡,当然脚的总数就会变少。那么到底有多少只兔子被看成了鸡呢?那要看少了多少只脚。每一只兔子都比鸡多两只脚,有一只兔子被看成鸡,就会少2只脚,现在少了20只脚,应该是多少只兔子被看成了鸡呢?)

上面的思考过程写成算式如下:20÷(4-2)=10(只)(4-2是每一只兔子比鸡多2只脚,20÷2就是看少了的这20只脚,是多少只兔子被算成了鸡。

10只就是被算成了鸡的兔子,也就是兔子的实际数量。

那么鸡的数量就是20-10=10(只)

当然也可以假设全是兔。过程省略。

方程法:设有兔子X只,那么鸡就是20-X只。

根据兔子有4只脚,鸡有2只脚,以及脚的总数,可以列出等式:兔脚总数+鸡脚总数=总脚数

即:4X+2(20-X)=60

4X+40-2X=60

2X=60-40

2X=20

X=10

鸡的只数:20-10=10(只)

当然也可以设鸡的数量为X。但是在解方程的过程中会遇到一点点小麻烦。课堂上我们比较过两种方法,一致认为设兔为X比较好。

假设法和方程法,运用熟练的话,都是非常好的方法。可以根据自己的习惯选择喜欢的方法。

当然,我个人还是非常喜欢使用方程法。

先练几道简单的。

1、今有鸡兔共居一笼,已知鸡头与兔头共35个,鸡脚与兔脚共94只,问鸡兔各几只?

2、小红的储钱罐里有面值2元和5元的人民币共65张,总钱数为205元,两种面值的人民币各多少张?

3、自行车越野赛全程 220千米,全程被分为 20个路段,其中一部分路段长14千米,其余的长9千米.问:长9千米的路段有多少个?

4、刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?

掌握了上面的题,考试遇见鸡兔同笼就没问题了。

不过鸡兔同笼的问题有很多变化,有兴趣的可以再做做下面的提高题。

下面的题都会有一点小变化,先给点提示。

1、某次数学测验共20题,做对一题得5分,做错一题倒扣1分,不做得0分.小华得了76分,问他做对几题?【如果用方程就好理解些,用算术方法,要想清楚明明是做错的题,给算成了对的,这样等于多算了多少分?】

2、12张乒乓球台上共有34人在打球,问:正在进行单打和双打的台子各有几张?【单打可不是一个人哟,是两个人在对打,那么双打呢?】

3、班主任张老师带五年级(2)班50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵,问几名男生,几名女生?【张老师栽的5棵该怎么处理?想一想。】

4、鸡与兔共有200只,鸡的脚比兔的脚少56只,问鸡与兔各多少只?【这题不是已知脚的总数了,而是知道两种动物脚的差,还是用方程好理解一些。】

5、鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚86只.问:鸡、兔各有几只?【成功训练上有这道题。提示一下,鸡兔互换后脚变少了,说明哪种动物多一些?多多少只?把这部分多的脚去掉,就能得到鸡兔相等的只数了。】

鸡兔同笼习题答案(基础题)

基础题:记得鸡兔同笼的问题一定要写答,千万别把两个答案弄反了。

1、假设全是兔,则一共有脚:35×4=140只

140-94=46只(多出46只脚)

鸡:46÷(4-2)=23只(多出的脚实际上是把22只鸡算成了兔,每只多算2只脚,44只脚是22只鸡的。)     兔:35-23=12只

2、假设全是2元的。则65张两元的一共是:65×2=130元

205-130=75元(少了75元)

5元的:75÷(5-2)=25张(少了75元,是因为有一些5元的被算成了2元的,每张少算3元钱,少75元,就说明有25张5元的被算成了2元的。)

2元的:65-25=40张

3、此题我用方程法来说明问题。

假设有X段是14千米的,那么就有20-X段是9千米的。

14X+9(20-X)=220

X=8

20-8=12段

答:有8段14千米长的,12段9千米长的。

4、此题我设小船有X条,则大船有10-X条。(前面文章里说过,设较小的这个为X,其实不太好,因为在解方程的过程中会遇到困难,这里我特意把这种方法展示出来,大家可以和上题比较一下,就能发现我说的困难在哪里。)

4X+6×(10-X)=41+1(此题中的老师也要坐船,所以要加上。)

4X+60-6X=42   (问题出现了,在现阶段,出现4X-6X这样的形式,学生会比较困惑。)

60-42=6X-4X  (可以这样处理,不过按照习惯,还要把带X的移到左边,于是得到下一步。)

2X=18

X=9     (小船9条)

大船:  10-9=1条

由此可见,还是设大船数量为X较好。

鸡兔同笼答案(提高题)

1、此题和基础题的区别在于,做对的得5分,做错的要扣1分。这样如果有一道题,明明做错了,却把它算成做对了,就等于多得了6分,也就是说,明明该减一分,却算成了加5分,对一道与错一道的得分之差为6分,算式是5+1=6。这是此题的关键。

假设全做对了,20×5=100分    100-76=24分(怎么少了24分?因为有一些题其实没做对,我们把它算成做对的了,每一道做错的题算成做对的,就会多出6分,所以才会多出24分,那么这24分到底是由多少道错题被算成了对题而多出的呢?)

做错的题:24÷(5+1)=4道 (此处必须是5+1,这也是解决此题的难点)

做对的题:20-4=16道

此题用方程亦可。设做对X道,则做错20-X道。

5X-1×(20-X)=76    (做对得的分一定要减去做错扣的分)

2、此题中单打是两人,双打是4人,这是常识,也是解题必须的条件。

假设全是双打的,那么12张台就有:12×4=48人

实际只有34人:48-34=14人

多出14人,因为有些台上不是双打,每对单打比双打少2人。

四年级数学鸡兔同笼 数学;鸡兔同笼(附答案)

单打的台数:14÷(4-2)=7张

双打的台数:12-7=5张

3、此题中要把老师栽的数量先减去,剩下的就是基本的鸡兔同笼问题了。

120-5=115棵

假设全班都是男生,那么50名男生能栽树:50×3=150棵

实际只栽了115棵,相差:150-115=35棵

为什么会少了35棵呢?因为有些是女生。每个女生比每个男生少栽3-2=1棵。

35棵就是多少女生少栽的呢?35÷(3-2)=35人

男生人数:50-35=15人。

4、此题用方程最简便。

解:设有X只鸡。则兔的数量是200-X只。根据鸡脚比兔脚少56只,可列方程:

4(200-X)-2X=56

800-4X-2X=56

800-6X=56

6X=744

X=124

兔的数量:200-124=76 只

5、此题可能较难理解一些。

首先通过“鸡兔互换,脚从100变成了86。”可知,脚变少了,说明鸡变多了,兔变少了。换句话说,原来没交换之前,兔比鸡多。

每一只兔变成鸡都会少2只脚,所以,鸡兔的脚数才会从100变成86。

这少了的14只脚,其实就是那些变成鸡的兔子少了的脚,每只兔子少2只脚,那么14只脚就是7只兔子少的。也就是说,原来兔子比鸡多7只。

算式:100-86=14只    14÷(4-2)=7只    (这是未互换之前,兔子比鸡多的只数。也是互换后,鸡比兔子多的只数。)

接下来的步骤也很关键。知道了原来兔子多,可以从100只脚中减去这部分多出的兔子的脚数,剩下的就是兔子和鸡数量相同的那部分脚的总数。

那么到底是100-7×4  还是100-7×2呢?

想想,我们要减去的是多出那7只兔子的脚,所以应该是100-7×4=72只

这72只脚中,包括一些鸡脚和一些兔子脚,可是仍然无法判断到底分别是多少。

这时候有一个问题至关重要,那就是图中用红线圈起来的部分,鸡和兔的数量是相等的。

假如鸡有X只,那么兔也有X只。鸡兔的脚数就是2X+4X=72只。反过来,72÷(4+2)=12只,这12只,既是红色线条内鸡的数量,也是红色线条内兔的数量。也就是说,是鸡和兔相等的那部分数量。

因此,鸡有12只,而兔有12+7=19只。这就是鸡兔未互换前分别有多少只。

此题有两个关键点,第一,别被”互换”迷惑,互换其实换的就是多出来的那部分,相同的部分没换。第二,在去掉了多出的那部分脚之后,要知道,剩下的鸡和兔数量是相等的,可以用剩下的脚数÷(4+2),就得到了相同部分两种动物的只数。

  

爱华网本文地址 » http://www.aihuau.com/a/383851/307294093397.html

更多阅读

谈古算题:“鸡兔同笼”问题

谈古算题 :“鸡兔同笼”问题“鸡兔同笼”问题,是我国古代著名数学趣题之一,大约在1500年前,《孙子算经》里记载了这个有趣的问题:“今有雉(鸡)兔同笼,上(共)有三十五头,下(共)有九十四足,问雉兔各几何?”从代数学科的角度看来,这是一个解方程组的问

鸡兔同笼练习题

鸡兔同笼练习题1、鸡兔同笼,头共20个,足共62只,求鸡与兔各有多少只?2、鸡兔同笼,头共35个,脚共94只,求鸡与兔各有多少个头?3、在一个停车场上,停了汽车和摩托车一共32辆。其中汽车有4个轮子,摩托车有3个轮子,这些车一共有108个轮子。求汽车和摩

鸡兔同笼练习题3

鸡兔同笼,共有30个头,88只脚。求笼中鸡兔各有多少只?2)一个饲养组一共养鸡、兔78只,共有200只脚,求饲养组养鸡和兔各多少只?

数学;鸡兔同笼附答案 小学数学鸡兔同笼教案

鸡兔同笼鸡兔同笼问题,其实是小学奥数中的一个专题,其中包含的题目从简到难,层次较多。掌握解答此类问题的基本方法,同时也让思维进一步得到锻炼,一种是假设法,一种是列方程。在这两种方法里,任意选择一种。例:鸡兔同笼,头20个,脚60只,问鸡兔各

《鸡兔同笼》教学设计及反思 称赞教学设计及反思

《鸡兔同笼》六年级数学科组六(2)班(范启)老师【教学内容】人教版六年级上册第七单元第112-115页“鸡兔同笼。【教学目标】1、了解“鸡兔同笼”问题的结构特点,尝试用列表、画图、假设、列方程等策略解决“鸡兔同笼”问题。2、在解

声明:《四年级数学鸡兔同笼 数学;鸡兔同笼(附答案)》为网友挽手说梦话分享!如侵犯到您的合法权益请联系我们删除