五年级上册数学《解方程》教学设计
教学内容:教材P67~68例1、例2及练习十五第1、2题。 教学目标: 知识与技能:使学生初步理解“方程的解”与“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。
过程与方法:利用等式的性质解简易方程。 情感、态度与价值观:关注由具体到一般的抽象概括过程,培养学生的代数思想。
教学重点:理解“方程的解”和“解方程”之间的联系和区别。
教学难点:理解形如a±x =b的方程原理,掌握正确的解方程格式及检验方法。
教学方法:创设情境;观察、猜想、验证.
教学准备:多媒体。 教学过程
一、 情境导入
谈话:同学们,咱们玩一个猜一猜的游戏好吗?出示一个盒子,让学生猜一猜里面可能有几个球呢?(学生思考后会说,可以是任意数。) 教师继续通过多媒体补充条件,并出示教材第67页例1情境图。 问:从图上你知道了哪些信息? 引导学生看图回答:盒子里的球和外面的3个球,一共是9个。 并用等式表示:x +3=9(教师板书)
二、互动新授
1.先让学生回忆等式的性质,再思考用等式的性质来求出x 的值。 学生思考、交流,并尝试说一说自己的想法。
2.教师通过天平帮助学生理解。
出示教材第67页第一个天平图,让学生观察并说一说。
长方体盒子代表未知的x 个球,每个小正方体代表一个球。则天平左边是x +3个球,右边是9个球,天平平衡,也就是列式:x +3=9。
观察:把左边拿掉3个球,要使天平仍然保持平衡要怎么办? (右边也要拿掉3个球。)
追问:怎样用算式表示?学生交流,汇报:
x +3-3=9-3
x =6
质疑:为什么两边都要减3呢?你是根据什么来求的? (根据等式的性质:等式的两边减去同一个数,左右两边仍然相等。) 你们的想法对吗?出示第3个天平图,证实学生的想法是对的。
3.师小结:刚才我们计算出的x =6,这就是使方程左右两边相等的未知数的值,叫做方程的解。也就是说,x =6就是方程x +3=9的解。求方程解的过程叫做解方程。(板书:方程的解 解方程)
4.引导:谁来说一说,方程的解和解方程有什么区别?
学生自主看课本学习,可能会初步知道,求出的x 的值是方程的解;求解的过程就是解方程。 师引导学生小结:“方程的解”中的“解”的意思,是指能使方程左右两边相等的未知数的值,它是一个数值;而“解方程”中的“解”的意思,是指求方程的解的过程,是一个计算过程。
5.验算:x =6是不是正确答案呢?我们怎么来检验一下? 引
导学生自主思考,并在小组内交流自己的想法。 通过学生的回答小结:可以把x =6的值代入方程的左边算一算,看看是不是等于方程的右边。
即:方程左边=x+3
=6+3
=9
=方程右边
让学生尝试验算,并注意指导书写。
6.出示教材第68页例2情境图。 让学生观察图,理解图意并用等式表示出来:3x =18 引导学生:通过刚才解方程的经验尝试解决这个题。 学生自主尝试解决,教师巡视指导。
汇报解题过程:等式的两边同时除以3,解得x =6。
根据学生的回答,师板书:3x =18
3x ÷3=18÷3
x =6
质疑:你是根据什么来解答的? 引导小结:根据等式的性质:等式两边同时乘或除以一个不为O的数,左右两边仍然相等。 让学生尝试检验计算结果是否正确。
7.讨论:解方程需要注意什么?让学生自主说一说,再汇报。 小结:根据等式的性质来解方程,解方程时要先写“解”,等号要对齐,解出结果后要检验。
三、巩固拓展 1.完成教材第67页“做一做”第1、2题。
四、课堂小结。师:这节课你学会了什么知识?有哪些收获? 引导总结:1.解方程时是根据等式的性质来解。2.使方程左右两边相等的未知数的值,叫做方程的解。3.求方程解的过程叫做解方程。
作业:教材第70页练习十五第1、2题。
板书设计:
方程的解 解方程
例1: x +3=9 例2:3x =18
x +3-3=9 -3 3x ÷3=18÷3
x=6 x=6
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
百度搜索“爱华网”,专业资料,生活学习,尽在爱华网