相关解答一:数学不好,怎么才能口算快点?
直接加两年减去6个月
(2016+2).(7-6).17
=2018.1.17
满意采纳奥
还有疑问请追问
相关解答二:怎么样快点要呗和我们数学的那个法则了
联想法,结合自己感兴趣的东西去记
相关解答三:数学的除法怎么算啊 ?、
从第一位起每一位数找除数能除的最大整数。
如122/5
1不能被5整除,则看12
12能被5整除的最大整数是2,余2,再用后一位2顶上一起做
22能被5整除的最大整数是4,余2
后面没有数位了,加上小数点,用零替位。
20能被5整除的最大整数是4。
即122/5的答案是24.4
补充内容的回答:
问号处应该是024
相关解答四:除法怎么算的 数学不好
1÷1=1 2÷2=1 3÷3=1 4÷4=1 5÷5=1 6÷6=1 7÷7=1 8÷8=1 9÷9=1
2÷1=2 4÷2=2 6÷3=2 8÷4=2 10÷5=2 12÷6=2 14÷7=2 16÷8=2 18÷9=2
3÷1=3 6÷2=3 9÷3=3 12÷4=3 15÷5=3 18÷6=3 21÷7=3 24÷8=3 27÷9=3
4÷1=4 8÷2=4 12÷3=4 16÷4=4 20÷5=4 24÷6=4 28÷7=4 32÷8=4 36÷9=4
5÷1=5 10÷2=5 15÷3=5 20÷4=5 25÷5=5 30÷6=5 35÷7=5 40÷8=5 45÷9=5
6÷1=6 12÷2=6 18÷3=6 24÷4=6 30÷5=6 36÷6=6 42÷7=6 48÷8=6 54÷9=6
7÷1=7 14÷2=7 21÷3=7 28÷4=7 35÷5=7 42÷6=7 49÷7=7 56÷8=7 63÷9=7
8÷1=8 16÷2=8 24÷3=8 32÷4=8 40÷5=8 48÷6=8 56÷7=8 64÷8=8 72÷9=8
9÷1=9 18÷2=9 27÷3=9 36÷4=9 45÷5=9 54÷6=9 63÷7=9 72÷8=9 81÷9=9
相关解答五:数学除法算式怎么验算
除法就用乘法来验算,比如8除以2等于4,那么4乘以2=8就是验算,就是用商乘以被除数得到除数就是验算,祝你学业有成,望采纳
相关解答六:数学算理 算法
数学:怎样提高运算能力
目前,中学生运算能力的状况是很差的,不少老师埋怨:"学生的计算能力太差了,连简单的运算都过不了关,甚至数学基础好的学生运算结果也常出差错。"这些状况的出现原因是多方面的。有的学生不明算理,机械地照搬公式;有的则是不顾运算结果,盲目推演,缺乏合理选择简捷运算途径的意识;也有的学生对提高运算能力缺乏足够的重视,他们总是把"粗心""马虎"作为借口;也有相当多的老师只着重解题方法和思路的引导,而忽视对运算过程的合理性、简捷性的必要指导。这样不仅影响了学生思维能力的发展,也必然影响教学质量的提高。本文就如何提高学生的运算能力,从以下几个方面谈谈自己的粗浅看法。
一、影响学生运算能力的心理因素
1.固定的思维方法
固定的思维方法在运算中有积极的一面,也有消极的影响,当学生掌握了某一种知识(方法)往入习惯用类似的旧知识(方法)去思考问题,这样必然会出现思维的惰性,影响运算的速度,使运算过程繁冗不堪。
2.缺乏比较意识
比较意识是解决问题的一个重要方向。解题时往往解决问题的途径很多,这就要求我们善于选优而从。有的学生缺乏比较意识,做题时往往找到一种方法就抱着死做下去,即使繁冗,也不在乎,认为做对就行了。老师在讲评试题时,忽略多种解法当中简捷方法的优先性。
二、运算能力及其特点
运算能力的基本特点有两个:
(1)运算能力的层次性
在数学发展的历史上,不同类别的运算是由简单到复杂、由具体到抽象、由低级到到高级逐步形成和发展起来的。因此对运算的认识和掌握也必须是逐步有序、有层次的,不掌握有理数的计算,就不可能掌握实数的计算;不掌握丹式的计算,也就不可能掌握分式的计算。不掌握有限运算,就不可能掌握无限计算。没有具体运算的基础,抽象运算就难以实现。由此可见,运算能力是随着知识面的逐步加宽、内容的不断深化、抽象程序的不断提高而逐步发展的。如果说数学内容的发展是无穷的,那么运算能力的提高也是永远不会终结的。
对于中学数学运算能力的要求大致可分为两个层次:①计算的准确性--基本要求②计算的合理、简捷、迅速--较高要求③计算的技巧性、灵活性--高标准要求。在思想上一定要充分认识提高运算能力的重要性,把运算技能上升到能力的层次上,把运算的技巧与发展思维融合在一起。
(2)运算能力的综合性
运算能力既不能离开具体的数学知识而孤立存在,也不能离开其他能力而独立发展,运算能力是和记忆能力、观察能力、理解能力、联想能力、表述能力等互相渗透的,它也和逻辑思维能力等数学能力相互支持着。因而提高运算能力的问题,是一个综合问题,在中学各科的教学过程中,努力培养计算能力,不断引导,逐渐积累、提高。
三、如何发展运算能力
培养和发展某一种运算的运算能力大致经历以下几个阶段:
1.理解有关运算的基本知识到形成这种运算的技能的阶段。
2.从运算技能上升到运算能力的阶段。
3.在各种应用中,进一步提高运算能力的阶段。
第一阶段要完成从知识到技能的过渡,重点是准确理解有关知识,熟练有关运算的方法、步骤,应该本着"先慢后快"、"先死后活"的原则。随着运算技能的形成,逐渐简化运算步骤,灵活运用法则、公式。培养学生合理选择简捷运算途径的意识和习惯。
计算能力的初步形成,还必须在今后应用中得到巩固、发展和深化。在应用过程中,运......余下全文>>
相关解答七:怎样能把数学竖式计算乘法的数学好
首先99乘法表要熟,然后从个位起一一对应相乘,然后每升一位向左移一位,细心就好啦。
都熟了之后还有一些快速算法,就可以搞定竖式计算了
相关解答八:数学分数加减法怎么算
如果是同分母,那只要分子相加减即可,比如1/2+4/2=5/2(二分之一加二分之四等于二分之五);
如果不是同分母,那就先找到两个分母的最小公倍数,然后通分,再将分子相加减即可,例如:1/3+1/2=5/6(三分之一加二分之一等于六分之五,3和2的最阀公倍数为6,所以分别将1/2和1/3通分后得到3/6和2/6,然后3/6+2/6=5/6)。
相关解答九:数学分数加减法怎么算
先分母同分,然后再分子加减起来
知道怎么同分吧,把分母变成一样鸡,就是分母的最小公倍数
相关解答十:初中数学乘法速算
十几乘十几:
口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?
解: 1×1=1
2+4=6
2×4=8
12×14=168
注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):
口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
注:个位相乘,不够两位数要用0占位。
3.第一个乘数互补,另一个乘数数字相同:
口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:
口诀:头乘头,头加头,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5.11乘任意数:
口诀:首尾不动下落,中间之和下拉。
例:11×23125=?解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分别在首尾
11×23125=254375
注:和满十要进一。
6.十几乘任意数:
口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×326=?
解:13个位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
注:和满十要进一。
百度搜索“爱华网”,专业资料,生活学习,尽在爱华网