数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想. 数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。
数形结合思想常见的四种类型
1.实数与数轴:实数与数轴上的点具有一一对应关系,因此借助数轴观察数的特点,直观明了。
2.在解方程(组)或不等式(组)中的应用:利用函数图象解决方程问题时,常把方程根的问题看作两个函数图象的交点问题来解决;利用数轴或函数图象解有关不等式(组)的问题直观,形象,易于找出不等式(组)解的公共部分或判断不等式组有无公共解。
3.在函数中的应用:借助于图象研究函数的性质是一种常用的方法,函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。
4.在几何中的应用:对于几何问题,我们常通过图形,找出边、角的数量关系,通过边、角的数量关系,得出图形的性质等。
典型例题:
解题反思:
本题是二次函数综合题,考查了待定系数法求二次函数的解析式,一次函数的解析式,等腰直角三角形的判定和性质,三角形相似的判定和性质,勾股定理的应用等,难点在于(3)作辅助线构造出相似三角形和三角形的中位线.
数形结合思想利用几何图形的性质研究数量关系,寻求代数问题的解决途径,或用数量关系研究几何图形的性质,解决几何问题,将数量关系和几何图形巧妙地结合起来,以形助数,以数辅形,使抽象问题直观化,复杂问题简单化,从而使问题得以解决的一种数学思想。
注意由数思形,由形想数,搞清数形关系,做好数形转化。
数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯。