9.5多项式的因式分解 5.因式分解

5.因式分解

因式分解★★ 把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.

★要点提示★

1.因式分解的对象是多项式,结果一定是积的形式.

2.结果中每一个因式必须是整式,且每个因式的次数都必须低于或等于原多项式的次数.

3.分解因式必须分解到不能再分解为止.

4.因式分解与整式乘法是互逆的关系,如

公因式 一个多项式中每一项都含有的因式叫做这个多项式的公因式.

提取公因式法★★★ 如果一个多项式的各项含有公因式,那么可以把该公因式提取出来作为多项式的一个因式,提出公因式后的式子放在括号里,作为另一个因式,这种分解因式的方法叫做提取公因式法.

★要点提示★

1.公因式的构成如下:①系数——取各项系数的最大公约数;②字母——取各项都含有的字母;③指数——取相同字母的最低次幂.

2.如果多项式的首项是负数时,一般应先提“-”号,使括号内第一项系数是正数,然后再对括号内的多项式进行提取公因式.

3.利用提取公因式法分解因式时,一定要提“干净”也就是说,提取后剩下的多项式不再有公因式.

9.5多项式的因式分解 5.因式分解

4.当某项就是公因式时,提取后剩下的“1”或“-1”不要漏掉.

公式法★★★ 逆用乘法公式将一个多项式分解因式的方法叫做公式法.

★要点提示★

1.运用公式法分解因式先要观察,如果的两项,考虑用平方差公式;如果是三项,考虑用完全平方公式.其次是多项式与公式的对应关系,什么是公式中的“a”,什么是公式中的“b”,然后才能运用公式.

2.一定要分解到不能再分解为止,如

a4-81=(a2+9)(a2-9),

就没有分解彻底.其中a2-9还可以分解为(a+3)(a-3).

3.合理变形,巧妙运用公式是一个难点.如分解因式(x-y)2-4(x-y-1),若将其变形为(x-y)2-4(x-y)+4后,就可以用完全平方公式分解因式了.

十字相乘法★★★ 利用十字交叉线来分解系数,把二次三项式切解因式的方法叫做十字相乘法.有

x2+(a+b)x+ab=(x+a)(x+b).

★要点提示★

1.用十字相乘法分解的多项式必须是二次三项式.

2.当二次项系数为1时,常采用的是“拆常数项,凑一次项”的方法.当常数项为正时,若一次项系数也为正,则把常数项分解为两个正的因数;若一次项的系数为负,则把常数项分解为两个负的因数.当常数项为负时,它分解后的两个因数异号;如果一次项系数为正,取绝对值较大的那个因数为正;若一次项的系数为负,取绝对值较大的那个因数为负.

分组分解法★★★ 利用分组来分解因式的方法叫做分组分解法.

★要点提示★

1.分组分解法主要应用于四项以上(包括四项)的多项式的因式分解.

2.分组的原则:

①分组后能直接提取公因式;

②分组后能直接运用公式.

3.常用的分组方法

①按字母分组;

②按系数分组;

③按次数分组.


  

爱华网本文地址 » http://www.aihuau.com/a/413551/826774613926.html

更多阅读

关于蛋白酶和肽酶对肽键的不同分解作用 肽键数等于什么

常有人望文生义,认为蛋白酶只水解二硫键,破坏蛋白质结构,不可以分解肽键,其实不然!去年的北京春季高考题中,就有一题考的是胰蛋白酶和糜蛋白酶一起可以消化蛋白质。[资料一]蛋白质水解过程是在蛋白酶和肽酶的联合催化下完成的。蛋白酶又称

分组分解法因式分解 分组分解法步骤

分组分解法通常用于超过三项的多项式的因式分解,四项式的因式分解时,通常分组方法是:二二分组,三一分组。 例1、am+bm+an+bn解:am+bm+an+bn=(am+bm)+(an+bn)(二二分组)=m(a+b)+n(a+b)(提公因式法)=(a+b)(m+n)(提公因式法)或am+bm+an+bn=(am+an)+(bm+bn)(二

声明:《9.5多项式的因式分解 5.因式分解》为网友寒烟兰烬休分享!如侵犯到您的合法权益请联系我们删除