粒子系统 无穷粒子随机系统

粒子系统 无穷粒子随机系统

wuqiong lizi suiji xitong
无穷粒子随机系统
infinite particle random system

   描述无穷粒子系统的随机场及随机过程。
   相变问题是平衡态统计物理中一个很重要的问题。经典的处理方法是研究有限粒子系统的吉布斯态(平衡态)的某些函数(如序参数、比能等)当系统扩张成无穷粒子系统时的性质,从而得到有关相变的结论。由于相变问题本质上是无穷粒子系统的一种集体现象,20世纪60年代后期一些学者用现代概率理论直接定义无穷粒子系统的吉布斯态(吉布斯随机场)。70年代初以来,又陆续提出了一些类型的马尔可夫过程作为吉布斯态的动态模型,这就是无穷质点马尔可夫过程。
 吉布斯态 它是描述无穷粒子系统的一种概率分布,为易于理解,以伊辛模型为例来说明。
 全体维整点集记作,设是的有限子集(参数集),它表示粒子所在的位置,每一[kg1][kg1]处的粒子的状态=+1或-1,对任何,[kg1][kg1],≠,有一数(,)≥0( (,)=(,))与之对应,它表示、两处的粒子相互作用的强度,这就是 上的一个伊辛模型。称集[737-6](取定 +1或-1)是整个系统的一个组态(样本点),系统的全体组态集(样本空间)用表示,令
        [737-7]表组态[kg1][kg1]的能量,[737-8]决定上的一个概率测度,其中[737-9]>0为常数。概率 称为由[kg2](,)决定的(有限)上的伊辛模型的平衡态,或称吉布斯态。如果令[kg2][737-10],,为取值±1的随机变量,为随机向量{:[kg1][kg1]}的一个概率分布。类似地,对的任何非空子集Λ, 集[737-11](取定+1或-1)表示Λ上的子系统的组态,Λ上的子系统的全体组态集用(Λ)表示。经过计算可得:
 命题 在 Λ上的组态为([kg1][kg1] (Λ))的条件下,Λ上的组态([kg1][kg1](Λ))的条件概率等于
            [737-12]式中[737-15],∪为上的组态。
 这一命题启示了直接定义=上的伊辛模型的吉布斯态的途径。直观地说,它就是上具有命题所述性质的概率测度,即对[kg2]的任何有限子集Λ,在Λ上组态为([kg1][kg1](Λ))的条件下,上的组态[kg2]([kg1][kg1](Λ))关于的条件概率为由(1)定义的[kg2]({};)。它的严格数学定义如下:设[kg2]=,,(Λ)的定义仍如上,其中Λ不一定有限, (,)还满足条件[737-13]。于是对的任何有限子集Λ及 [kg1][kg1](Λ),[kg1][kg1] ( Λ),可按(1)定义({};),对给定的 [kg1][kg1] ( Λ),它是 (Λ)上的概率测度。再令 为包含一切形如 {∪:[kg1][kg1](Λ)}( [kg1][kg1] (Λ),Λ为的有限子集)的组态集的最小域,它表示组态的事件域;对给定的Λ,(Λ)为包含一切形如{∪∪:[kg1][kg1] (Λ), [kg1][kg1](Λ)}(其中[kg2][737-111]为有限集,[kg1][kg1](ΛΛ))的组态集的最小域,它是中那些在Λ上就能观察到的组态事件组成的域。设 为上的概率测度,如果对的任何有限子集Λ,任何[kg1][kg1] (Λ),条件概率(见条件期望)
    [737-14]   (2)对几乎必然成立,则称为上伊辛模型的吉布斯态。
 如果令[737-16]则是(,)上取值±1的随机变量,(Λ)是随机变量族{: [kg1][kg1]Λ}所产生的域,吉布斯态是随机过程{:[kg1][kg1]}的分布,对的任何有限子集Λ,任何[kg1][kg1](Λ),
  [738-1]  (2)对几乎必然成立。称具有吉布斯态的随机过程{:[kg1][kg1]}为上伊辛模型的吉布斯随机场。
 伊辛模型的吉布斯态总是存在的m它与函数[kg2](,)及参数有关,但是对给定的及,它未必惟一。如果对给定的,存在[kg1][kg1](0,∞),使当时,吉布斯态惟一,当>时,[kg2]吉布斯态不惟一,则称此伊辛模型有相变,称为它的临界点。
 从这样定义的吉布斯态出发,可以证明用经典方法得到的一些物理结果:①设(,)=(0,-)对一切,[kg1][kg1],≠成立,若存在>0使对一切[kg1][kg1]且││=1有(0,||)≥,[kg2]则当≥2时,伊辛模型有相变。②若当|-│=1时 (,)=1,当│-│≠1时(,)=0,则称相应的伊辛模型为紧邻的。紧邻伊
辛模型当 =1时无相变,当≥2时有相变;当=2时,[kg2]已算出(这是L.昂萨格1944年得到的一个著名结果),而对≥3的情形,的值还不知道。求出 =3时的值是一个重要而未解决的问题。关于伊辛模型还有很多没有解决的、在数学上值得研究、在物理上有意义的问题。
 不限于伊辛模型,按照(2)的方式还可以定义十分广泛的吉布斯态与正则吉布斯态以及相变的概念,大部分平衡态统计物理的模型都可以纳入这个框架,而且已经得到它们的存在性与惟一性的一些条件。相变问题的研究尚有待深入。
 无穷质点马尔可夫过程 从统计物理来看,作为无穷粒子系统的平衡态的吉布斯态应该是系统的某一可逆物理过程的定态。因此在概率论中提出了如下形式的问题:是否存在以(,)为状态空间的马尔可夫过程{:≥0},它的分布满足下列要求:①对任何,[kg1][kg1],[kg2]≠,[kg1][kg1],当→0时,有
          [738-2]     (3)式中[738-7];②上的概率测度 是伊辛模型的吉布斯态,当且仅当以 为初始分布的该过程是一个时间可逆的马尔可夫过程。所谓时间可逆就是当时间“倒转”时,过程的分布不变,即对任何[738-3]任何[kg1][kg1],=0,1,…,,都有[738-4][738-4-1]。 这个问题已经解决。对更一般的(,),由(3)决定的马尔可夫过程称为自旋变相(或称生灭型)过程,它与排他(或称粒子运动型)过程是最早提出的两类无穷质点马尔可夫过程。对自旋变相过程与排他过程的上述问题(可逆性问题),已经得到接近完整的结果;近年来,中国学者在这方面进行了工作。
 无穷质点马尔可夫过程虽然是由平衡统计物理引起的,但近年来不断提出了新的模型。这些模型涉及非平衡统计物理、化学、生物、医学以及社会科学。它的研究已进入非平衡系统的范围,遍历性理论是它的主要研究方向。这是概率论中一个值得注意的正在发展的新分支。
 参考书目
陈木法著:《跳过程与无穷粒子系统》,北京师范大学出版社,北京,1986。
普雷斯顿著,严士健等译:《随机场》,北京师范大学出版社,北京,1983。(C. Preston, Rndom Field,Lecture Notes in Mthemtics 534,Springer-Verlag,Berlin, 1956.
D. Ruelle,  Sttisticl  Mechnics:  RiorousResults,W. A. Benjamin, Reading Mass.,1969.
Ya. G. Sinai, Theory  of  Phse  Trnsitions:Riorous Results, Pergamon Press, London,1982.
T.Liggett, Interctin  Prticle  Systems,Springer-Verlag, New York,1985.
                 严士健

以上就是网友分享的关于"无穷粒子随机系统"的相关资料,希望对您有所帮助,感谢您对爱华网的支持!   

爱华网本文地址 » http://www.aihuau.com/a/416251/71723864142.html

更多阅读

在Win7系统中使用Readyboost加速 win7系统加速器

在Win7系统中使用Readyboost加速——简介ReadyBoost是Vista系统开始加入的重要新功能之一,而在win7系统中这项功能得到了进一步的增强,并且实用性更佳。ReadyBoost利用了闪存随机读写及零碎文件读写上的优势来提高系统性能,主要是为了

液力传动系统对工作油的要求 液力机械传动系统

装载机、推土机等采用液力传动的工程机械,使用中常出现驱动无力的故障。这种故障除系统中某些元件损坏所致外,还有一个往往被忽视的原因,即液力传动系统工作油的选用是否正确,油液是否变质。尤其是一些进口二手机械,一般无随机资料,用户对

官网更新:云之遥地城系统(一)

地城系统为《云之遥》中所推出的新系统。地城系统除了让玩家可以挑战不同于主线剧情的强力怪物之外,同时一些游戏主线中「不可辨识」的强力怪物,也可以在地城中进行辨识,当在地城中面对怪物战斗而获胜时,更可以获得游戏中的奖励点数,以取

声明:《粒子系统 无穷粒子随机系统》为网友帅先森分享!如侵犯到您的合法权益请联系我们删除