初三数学复习试题

26.如图1,已知抛物线y=ax2+bx+2的图象经过点A﹣1,0(,B(4,0)两点,与y轴交于点C.

(1)求抛物线的解析式;

(2)若点Q(m,m﹣1)是抛物线上位于第一象限内点点,P是线段AB上的一个动点(不与A、B重合),经过点P分别作PD∥BQ交AQ于点D,PE∥AQ交BQ于点E.

①求证:四边形PDQE是矩形;

②连接DE,试直接写出线段DE的长度范围是   (直接填空);

③如图2,在抛物线上是否存在一点F,使得P、F、A、C为顶点的四边形为平行四边形?若存在,求出点F和点P坐标;若不存在,说明理由.

16.如图,点A在反比例函数的图象上,点B在反比例函数的图象上,且∠AOB=90°,则tan∠OAB的值为  .

26.如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.

(1)求顶点D的坐标(用含a的代数式表示);

(2)若以AD为直径的圆经过点C.

①求抛物线的函数关系式;

②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;

③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.

27.如图,∠C=90°,点A、B在∠C的两边上,CA=30,CB=20,连接AB.点P从点B出发,以每秒4个单位长度的速度沿BC方向运动,到点C停止.当点P与B、C两点不重合时,作PD丄BC交AB于D,作DE丄AC于E,F为射线CB上一点,且∠CEF=∠ABC.设点P的运动时间为x(秒).

(1)用含有x的代数式表示CE的长.

(2)求点F与点B重合时x的值.

(3)当点F在线段CB上时,设四边形DECP与四边形DEFB重叠部分图形的面积为y(平方单位).求y与x之间的函数关系式.

(4)当x为某个值时,沿PD将以D、E、F、B为顶点的四边形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的x值.

6.已知二次函数y=a(x﹣h)2+k(a>0)的图象过点A(0,1)、B(8,2),则h的值可以是(  )

A.3   B.4   C.5   D.6

26.小明早晨从家里出发匀速步行去学校,路上一共用时20分钟.小明的妈妈在小明出发后10分钟,发现小明的数学课本没带,于是她带上课本立即匀速骑车按小明上学的路线追赶小明,结果与小明同时到达学校.设小明从家到学校的过程中,出发t分钟时,他和妈妈所在的位置与家的距离分别为s1(千米)和s2(千米),其中s1(千米)与t(分钟)之间的函数关系的图象为图中的折线段OA﹣AB.

(1)请解释图中线段AB的实际意义;

(2)试求出小明从家到学校一共走过的路程;

(3)在所给的图中画出s2(千米)与t(分钟)之间函数关系的图象(给相关的点标上字母,指出对应的坐标),并指出图象的形状.

27.(1)如图1,将直角的顶点E放在正方形ABCD的对角线AC上,使角的一边交CD于点F,另一边交CB或其延长线于点G,求证:EF=EG;

(2)如图2,将(1)中的“正方形ABCD”改成“矩形ABCD”,其他条件不变.若AB=m,BC=n,试求的值;

(3)如图3,将直角顶点E放在矩形ABCD的对角线交点,EF、EG分别交CD与CB于点F、G,且EC平分∠FEG.若AB=2,BC=4,求EG、EF的长.

27.△ABC中,AB=AC=10,BC=12,矩形DEFG中,EF=4,FG>12.

(1)如图①,点A是FG的中点,FG∥BC,将矩形DEFG向下平移,直到DE与BC重合为止.要研究矩形DEFG与△ABC重叠部分的面积,就要进行分类讨论,你认为如何进行分类,写出你的分类方法(无需求重叠部分的面积).

(2)如图②,点B与F重合,E、B、C在同一直线上,将矩形DEFG向右平移,直到点E与C重合为止.设矩形DEFG与△ABC重叠部分的面积为y,平移的距离为x.

①求y与x的函数关系式,并写出自变量的取值范围;

②在给定的平面直角坐标系中画出y与x的大致图象,并在图象上标注出关键点坐标.

 

16.如图,矩形纸片ABCD中,AB=4,AD=6,点P是边BC上的动点,现将纸片折叠,使点A与点P重合,折痕与矩形边的交点分别为E、F,要使折痕始终与边AB、AD有交点,则BP的取值范围是      

25.甲乙两地相距400千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地的路程y(千米)与所用时间x(小时)之间的函数关系,折线BCD表示轿车离甲地的路程y(千米)与x(小时)之间的函数关系,根据图象解答下列问题:

(1)求线段CD对应的函数表达式;

(2)求E点的坐标,并解释E点的实际意义;

(3)若已知轿车比货车晚出发20分钟,且到达乙地后在原地等待货车,则当x=  小时,货车和轿车相距30千米.

16.如图,在矩形ABCD中,AB=8.将矩形的一角折叠,使点B落在边AD上的B′点处,若AB′=4,则折痕EF的长度为 5 .

 

25.在正方形ABCD中,AD=2,l是过AD中点P的一条直线.O是l上一点,以O为圆心的圆经过点A、D,直线l与⊙O交于点E、F(E、F不与A、D重合,E在F的上面).

(1)如图,若点F在BC上,求证:BC与⊙O相切.并求出此时⊙O的半径.

(2)若⊙O半径为,请直接写出∠AED的度数.

16.如图,A、B、C、D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A、D、E3点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系式为    .

 

16.函数y1=k1x+b的图象与函数y2=的图象交于点A(2,1)、B(n,2),则不等式﹣<﹣k1x+b的解集为            

27.如图,在△ABC中,∠A=90°,AB=AC=12cm,半径为4cm的⊙O与AB、AC两边都相切,与BC交于点D、E.点P从点A出发,沿着边AB向终点B运动,点Q从点B出发,沿着边BC向终点C运动,点R从点C出发,沿着边CA向终点A运动.已知点P、Q、R同时出发,运动速度分别是1cm/s、xcm/s、1.5cm/s,运动时间为ts.

(1)求证:BD=CE;

(2)若x=3,当△PBQ∽△QCR时,求t的值;

(3)设△PBQ关于直线PQ对称的图形是△PB'Q,求当t和x分别为何值时,点B′与圆心O恰好重合.

26.如图,已知△ABC,AB=6、AC=8,点D是BC边上一动点,以AD为直径的⊙O分别交AB、AC于点E、F.

(1)如图①,若∠AEF=∠C,求证:BC与⊙O相切;

(2)如图②,若∠BAC=90°,BD长为多少时,△AEF与△ABC相似.

27.已知直角△ABC,∠ACB=90°,AC=3,BC=4,D为AB边上一动点,沿EF折叠,点C与点D重合,设BD的长度为m.

(1)如图①,若折痕EF的两个端点E、F在直角边上,则m的范围为 2≤m≤4 ;

(2)如图②,若m等于2.5,求折痕EF的长度;

(3)如图③,若m等于,求折痕EF的长度.

 

28.(本小题满分13分如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3),双曲线,的图像经过BC上的点D与AB交于点E,连接DE,若若E是AB的中点﹒

(1)求D点的坐标;

(2)点F是OC边上一点,若△FBC和△DEB相似,求BF的解析式;

(3)若点P(m,3m+6)也在此反比例函数的图像上(其中m >0),过p点作x轴的垂线,交x轴于点M,若线段PM上存在一点Q,使得△OQM的面积是,设Q点的纵坐标为n,求n2-2n+9的值.

29.(本小题满分10分)在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A在点B的左侧.

(1)如图1,当k=1时,直接写出A,B两点的坐标;

(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;

(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k的值;若不存在,请说明理由.

28.(本题满分12分)已知,在平面直角坐标系中,点P(0,2),以P为圆心,OP为半径的半圆与y轴的另一个交点是C, 一次函数(m为实数)的图象为直线l,l分别交x轴,y轴于A,B两点,如图1.

(1) B点坐标是         (用含m的代数式表示),∠ABO=          °

(2) 若点N是直线AB与半圆CO的一个公共点(两个公共点时,N为右侧一点),过点N作⊙P的切线交x轴于点E,如图2.

①是否存在这样的m的值,使得△EBN是直角三角形。若存在,求出m的值;若不存在,请说明理由.

②当=时,求m的值.

     

     

        

 

 

(图1)                            (图2)                 (操作用图)

 

 

 

 

25.(本题10分) 某地质公园为了方便游客,计划修建一条栈道BC连接两条进入观景台OA的栈道AC和OB,其中AC⊥BC,同时为减少对地质地貌的破坏,设立一个圆形保护区⊙M(如图所示),M是OA上一点,⊙M与BC相切,观景台的两端A、O到⊙M上任意一点的距离均不小于80米.经测量,OA=60米,OB=170米,.

(1)求栈道BC的长度; 

(2)当点M位于何处时,可以使该圆形保护区

的面积最大? 

 

 

 

 

26.(本题12分)已知抛物线过点A(-6,0),对称轴是直线,与y轴交于点B,顶点为D.

(1)求此抛物线的表达式及点D的坐标;

(2)连DO,求证:∠AOD=∠ABO;

(3)点P在y轴上,且△ADP与△AOB相似,

求点P的坐标.

 

27.(本题14分)如图,已知在Rt△ABC中,∠A=90°,AB=8,AC=6,若将△ABC翻折,折痕EF分别交边AB、边AC于点E和点F且点A落在BC边上,记作点D,设BD

=x,y=tan∠AFE.

(1)连AD交折痕EF于点P,当点E从AB边中点运动到与点B重合的过程中,点P的运动路径长是多少?(直接写出答案)

(2)若点E不与B点重合,点F不与C点重合,求y关于x的函数关系式及x的取值范围; 

(3)当时,求x的值.

 

 

 

28.(本题9分)如图,在直角坐标系中,平行四边形AOCD的边OC在x轴上,边AD与y轴交与点H,点E、F分别是边AD和对角线OD上的动点(点E不与A、D重合),且∠OEF=∠A=∠DOC,CD=10,sin∠OCD=.

   (1)求点C、D的坐标;

   (2)设AE=x,OF=y.求y关于x的函数关系式,并写出x的取值范围;

(3)点E在边AD上移动的过程中,△OEF是否有可能成为一个等腰三角形?若有可能,请求出x的值,若不可能,请说明理由.

 

 

 

 

 

 

第28题

 

 


29.(本题10分)某校初三数学社团成员一起研究二次函数。他们发现一个二次函数的图象具有以下性质:①它是一个轴对称图形,②图象经过原点,③在y轴左侧,y随x的增大而减小,在y轴的右侧,y随x的增大而增大,④经过点A(3,9)

(1)写出该抛物线的解析式;

(2)该抛物线上有两个不同的点P、Q,设点P的横坐标为m(m>0),取OP的中点

     M,当m在一定的范围内,总有∠PMQ=2∠MOQ.

    ①若点P与点A重合,求点Q的横坐标; ②求m的取值范围;

 (3)在(2)的条件下,点M关于直线PQ的对称点N恰好落在y轴上,求此时m 的值.

 

27.(本题满分12分)已知:点E为AB边上的一个动点.

(1)如图1,若△ABC是等边三角形,以CE为边在BC的同侧作等边△DEC ,连结AD.试比较∠DAC与∠B的大小,并说明理由;

(2)如图2,若△ABC中,AB=AC,以CE为底边在BC的同侧作等腰△DEC ,且

△DEC∽△ABC,连结AD.试判断AD与BC的位置关系,并说明理由;

(3)如图3,若四边形ABCD是边长为2的正方形,以CE为边在BC的同侧作正方形ECGF.

①试说明点G一定在AD的延长线上;

②当点E在AB边上由点B运动至点A时,点F随之运动,求点F的运动路径长.

 

                                          

 

 

 

 

 

 

 

 

 


28.(本题满分12分)在平面直角坐标系中,抛物线经过A(-3,0)、B(4,0)两点,且与y轴交于点C,点D在x轴的负半轴上,且BD=BC,有一动点P从点A出发,沿线段AB以每秒1个单位长度的速度向点B移动,同时另一个动点Q从点C出发,沿线段CA以某一速度向点A移动.

(1)求该抛物线的解析式;

(2)若经过t秒的移动,线段PQ被CD垂直平分,求此时t的值;

(3)该抛物线的对称轴上是否存在一点M,使MQ+MA的值最小?若存在,求出点M的坐标;若不存在,请说明理由.

 

 

 

 

 

 

 

 综合性问题                                  

4. (2015·浙江嘉兴,第16题5分)如图,在直角坐标系xOy中,已知点A(0,1),点P在线段OA上,以AP为半径的☉P周长为1.点M从A开始沿☉P按逆时针方向转动,射线AM交x轴于点N(n,0),设点M转过的路程为m(0<m< 1).                                                                                                                      

                                                                                                      

(1)当m=  时,n=________;                                                                                   

(2)随着点M的转动,当m从  变化到  时,点N相应移动的路径长为________.                                                      

5. (2015·浙江金华,第15题4分)如图,在平面直角坐标系中,菱形OBCD的边OB在轴正半轴上,反比例函数的图象经过该菱形对角线的交点A,且与边BC交于点F. 若点D的坐标为(6,8),则点F的坐标是   ▲                                                                                                                    

                                                                                                 

                                                                                                                               

6.(2015湖北荆州第18题3分)如图,OA在x轴上,OB在y轴上,OA=8,AB=10,点C在边OA上,AC=2,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)的图象经过圆心P,则k= ﹣ .                                                                                                                 

                                                                                              

7. (2015·浙江丽水,第16题4分)如图,反比例函数的图象经过点(-1,),点A是该图象第一象限分支上的动点,连结AO并延长交另一支于点B,以AB为斜边作等腰直角三角形ABC,顶点C在第四象限,AC与  X轴交于点P,连结BP.                                 

(1) K的值为    ▲    .                                                                                         

(2)在点A运动过程中,当BP平分∠ABC时,点C的坐标是   ▲    .                  

                                                                                                       

                                                                     

三.解答题                                                                                                                     

1 .(2015辽宁大连,26,12分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴和y轴的正半轴上,顶点B的坐标为(2m,m),翻折矩形OABC,使点A与点C重合,得到折痕DE.设点B的对应点为F,折痕DE所在直线与y轴相交于点G,经过点C、F、D的抛物线为。                                                        

(1)求点D的坐标(用含m的式子表示)                                                             

(2)若点G的坐标为(0,-3),求该抛物线的解析式。                                       

(3)在(2)的条件下,设线段CD的中点为M,在线段CD上方的抛物线上是否存在点P,使PM=EA?若存在,直接写出P的坐标,若不存在,说明理由。                                                                                              

                                                                            

                                                       

2. (2015辽宁大连,24,11分)如图1,在△ABC中,∠C=90°,点D在AC上,且CD>DA,DA=2.点P、Q同时从D点出发,以相同的速度分别沿射线DC、射线DA运动。过点Q作AC的垂线段QR,使QR=PQ,联接PR.当点Q到达A时,点P、Q同时停止运动。设PQ=x.△PQR和△ABC重合部分的面积为S.S关于x的函数图像如图2所示(其中0<x≤,<x≤m时,函数的解析式不同)                                                                                               

(1)填空:n的值为___________;                                                                          

(2)求S关于x的函数关系式,并写出x的取值范围。                                                                            

                                                                                                                               

                                                                                    

           图1                                           图2                   

3. . (2015山东省德州市,24,12分)已知抛物线y=-mx2+4x+2m与x轴交于点A(α,0), B(β,0),且.                                                                                                                

(1)求抛物线的解析式.                                                                                              

(2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E. 是否存在x轴上的点M、y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.                               

(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标.                                                                                                   

                                          

4. (2015山东济宁,22,11分) (本题满分11分)                                                                                  

如图,⊙E的圆心E(3,0),半径为5,⊙E与y轴相交于A、B两点(点A在点B的上方),与x轴的正半轴相交于点C;直线l的解析式为y=x+4,与x轴相交于点D;以C为顶点的抛物线经过点B.                                                   

(1)求抛物线的解析式;                                                                                     

(2)判断直线l与⊙E的位置关系,并说明理由;                                                   

(3) 动点P在抛物线上,当点P到直线l的距离最小时,求出点P的坐标及最小距离.                                                                  

                                                                                             

                                                                                                  

5. (2015山东省德州,23,10分)                                                                        

(1)问题 如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.       

求证:AD·BC=AP·BP.                                                                                             

(2)探究 如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.                                                                        

(3)应用   请利用(1)(2)获得的经验解决问题:                                                  

如图3,在△ABD中,AB=6,AD=BD=5.点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切,求t的值.                                                               

                                                                                                                              

                                                                               

                                                                                                                

6.(2015·北京市,第29题,8分)在平面直角坐标系中,的半径为r,P是与圆心C不重合的点,点P关于的反称点的定义如下:若在射线CP上存在一点,满足,则称为点P关于的反称点,下图为点P及其关于的反称点的示意图。                                                                                            

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

(1)当的半径为1时。                                                                                        

①分别判断点,,关于的反称点是否存在,若存在?

求其坐标;                                                                                                                   

②点P在直线上,若点P关于的反称点存在,且点不在x轴上,求点P的横坐标的取值范围;    

(2)当的圆心在x轴上,半径为1,直线与x轴,y轴分别交于点A,B,若线段AB上存在点P,使得点P关于的反称点在的内部,求圆心C的横坐标的取值范围。                                                                   

 

7. (2015·山东潍坊第24 题14分)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.                                                                         

(1)求抛物线的解析式;                                                                                            

(2)当0<t≤8时,求△APC面积的最大值;                                                               

(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.                                                                                                                      

                                                                                         

9.(2015·山东威海,第23题10分)(1)如图1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.                                                                    

(2)如图2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的长.                                                                                           

                                                                                

                                                                                                                               

10.(2015·山东威海,第24题11分)如图1,直线y=k1x与反比例函数y=(k≠0)的图象交于点A,B,直线y=k2x与反比例函数y=的图象交于点C,D,且k1·k2≠0,k1≠k2,顺次连接A,D,B,C,AD,BC分别交x轴于点F,H,交y轴于点E,G,连接FG,EH.                                                                                                       

(1)四边形ADBC的形状是       ;                                                                

(2)如图2,若点A的坐标为(2,4),四边形AEHC是正方形,则k2=  ;      

(3)如图3,若四边形EFGH为正方形,点A的坐标为(2,6),求点C的坐标;      

(4)判断:随着k1、k2取值的变化,四边形ADBC能否为正方形?若能,求点A的坐标;若不能,请简要说明理由.                                                                                                                   

        

11.(2015·山东日照 ,第20题10分)如图,已知,在△ABC中,CA=CB,∠ACB=90°,E,F分别是CA,CB边的三等分点,将△ECF绕点C逆时针旋转α角(0°<α<90°),得到△MCN,连接AM,BN.                                                      

(1)求证:AM=BN;                                                                                       

(2)当MA∥CN时,试求旋转角α的余弦值.                                                                                         

                                                                    

12.(2015·山东日照 ,第21题12分)阅读资料:                                            

如图1,在平面之间坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A,B两点间的距离为AB=.                                 

我们知道,圆可以看成到圆心距离等于半径的点的集合,如图2,在平面直角坐标系xoy中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x﹣0|2+|y﹣0|2,当⊙O的半径为r时,⊙O的方程可写为:x2+y2=r2.                          

问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为 (x﹣a)2+(y﹣b)2=r2 .                                                                                                         

综合应用:                                                                                                                   

如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连接AB.   

①证明AB是⊙P的切点;                                                                                 

②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙O的方程;若不存在,说明理由.    

13.(2015·山东日照 ,第22题14分)如图,抛物线y=x2+mx+n与直线y=﹣x+3交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A(0,3),C(3,0).   

(Ⅰ)求抛物线的解析式和tan∠BAC的值;                                                            

(Ⅱ)在(Ⅰ)条件下:                                                                        

(1)P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.                                  

(2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒个单位的速度运动到A后停止,当点E的坐标是多少时,点M在整个运动中用时最少?                                                                                                               

                                                                                  

15 .(2015·深圳,第23题  分)如图1,关于的二次函数经过点,点,点为二次函数的顶点,为二次函数的对称轴,在轴上。       

(1)求抛物线的解析式;                                                                                 

(2)DE上是否存在点P到AD的距离与到轴的距离相等,若存在求出点P,若不存在请说明理由;                                                                                                

(3)如图2,DE的左侧抛物线上是否存在点F,使2S⊿FBC=3S⊿EBC,若存在求出点F的坐标,若不存在请说明理由。                                                                                                                   

                                                                        

18.(2015·南宁,第26题10分)在平面直角坐标系中,已知A、B是抛物线上两个不同的点,其中A在第二象限,B在第一象限.                                                    

(1)如图15-1所示,当直线AB与轴平行,AOB=90°,且AB=2时,求此抛物线的解析式和A、B两点的横坐标的乘积.                                                                                

(2)如图15-2所示,在(1)所求得的抛物线上,当直线AB与轴不平行,AOB仍为90°时,A、B两点的横坐标的乘积是否为常数?如果是,请给予证明;如果不是,请说明理由.                                                                    

(3)在(2)的条件下,若直线分别交直线AB,轴于点P、C,直线AB交轴于点D,且BPC=OCP,求点P的坐标.                                                                                                              

                                                                 

                                         

19.(2015·贵州六盘水,第26题16分)如图14,已知图①中抛物线经过点D(-1,0),D(0,-1),E(1,0).                                                                                                                    

                                                               

(1)(4分)求图①中抛物线的函数表达式.                                                         

(2)(4分)将图①中的抛物线向上平移一个单位,得到图②中的抛物线,点D与点D1是平移前后的对应点,求该抛物线的函数表达式.                                                 

(3)(4分)将图②中的抛物线绕原点O顺时针旋转90°后得到图③中的抛物线,所得到抛物线表达式为,点D1与D2是旋转前后的对应点,求图③中抛物线的函数表达式.                                                                           

(4)(4分)将图③中的抛物线绕原点O顺时针旋转90°后与直线 相交于A、B两点,D2与D3是旋转前后如图④,求线段AB的长.                                                                                                         

21.(2015·河南,第17题9分)如图,AB是半圆O的直径,点P是半圆上不与点A、B重合的一个动点,延长BP到点C,使PC=PB,D是AC的中点,连接PD,PO.                                                                                      

(1)求证:△CDP∽△POB;                                                                                  

(2)填空:① 若AB=4,则四边形AOPD的最大面积为          ;                        

② 连接OD,当∠PBA的度数为      时,四边形BPDO是菱形.                                                                         

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                       

                                                                                                                 

                                                                                                                               

22.(2015·河南,第22题10分)如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE. 将△EDC绕点C按顺时针方向旋转,记旋转角为α.

   (1)问题发现                                                                                                        

        ① 当时,② 当时

(2)拓展探究                                                                                                             

        试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明.

(3)问题解决                                                                                                             

     当△EDC旋转至A、D、E三点共线时,直接写出线段BD的长.                      

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                  

                                                                                                                               

23.(2015·河南,第23题11分)如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A、C间的一个动点(含端点),过点P作PF⊥BC于点F. 点D、E的坐标分别为(0,6),(-4,0),连接PD,PE,DE

   (1)请直接写出抛物线的解析式;                                                   

(2)小明探究点P的位置发现:当点P与点A或点C重合时,PD与PF的差为定值. 进而猜想:对于任意一点P,PD与PF的差为定值. 请你判断该猜想是否正确,并说明理由;

(3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.                                          

     请直接写出所有“好点”的个数,并求出△PDE的周长最小时“好点”的坐标.                                                            

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                  

                                                                                    

                                                                                                                               

25.(2015·黑龙江绥化,第28题  分)如图1,在正方形ABCD中,延长BC至M ,使BM=DN ,连接MN交BD延长线于点E.                                                                                    

(1)求证:BD+2DE=BM .                                                                           

(2)如图2 ,连接BN交AD于点F ,连接MF交BD于点G.若AF:FD=1:2 ,且CM=2,则线段DG=_______.                                                                                    

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

 

                                                                                                                               

26.(2015·黑龙江绥化,第29题 分)如图 ,已知抛物线y=ax2+bx+c与x轴交于点A、B ,与直线AC:y=-x-6交y轴于点C、D,点D是抛物线                                                  

   的顶点 ,且横坐标为-2.                                                                          

  (1)求出抛物线的解析式。                                                                                

  (2)判断△ACD的形状,并说明理由。                                                       

  (3)直线AD交y轴于点F ,在线段AD上是否存在一点P ,使∠ADC=∠PCF.若存在 ,直接写出点P的坐标;若不存在,说明理由。                                                                                                                   

                                                                                                                               

                                                                                      

27. (2015·浙江湖州,第23题10分)问题背景:已知在△ABC中,AB边上的动点D由A向B运动(与A,B不重合),点E与点D同时出发,由点C沿BC的延长线方向运动(E不与C重合),连结DE交AC于点F,点H是线段AF上一点

(1)初步尝试:如图1,若△ABC是等边三角形,DH⊥AC,且点D,E的运动速度相等,求证:HF=AH+CF                                                                                                        

小王同学发现可以由以下两种思路解决此问题:                                              

思路一:过点D作DG∥BC,交AC于点G,先证GH=AH,再证GF=CF,从而证得结论成立.                                                                                 

思路二:过点E作EM⊥AC,交AC的延长线于点M,先证CM=AH,再证HF=MF,从而证得结论成立.                                                                                              

请你任选一种思路,完整地书写本小题的证明过程(如用两种方法作答,则以第一种方法评分)                                                                                  

(2)类比探究:如图2,若在△ABC中,∠ABC=90°,∠ADH=∠BAC=30°,且点D,E的运动速度之比是:1,求的值.                                                                                    

(3)延伸拓展:如图3,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,记=m,且点D、E的运动速度相等,试用含m的代数式表示 (直接写出结果,不必写解答过程).                                                                                 

                                                                    

                                                                     

28. (2015·浙江湖州,第24题12分)在直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.  

(1) 如图1,若该抛物线经过原点O,且a=.                                                      

①求点D的坐标及该抛物线的解析式.                                                                      

②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由.                                                                      

(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余,若符合条件的Q点的个数是4个,请直接写出a的取值范围.                                                                                      

                                                                                           

29. (2015·浙江嘉兴,第24题14分)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.                                                                                    

(1)概念理解                                                                                                             

如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.                                                                                                        

(2)问题探究   ①小红猜想:对角线互相平分的“等邻边四边形”是菱形.她的猜想正确吗?请说明理由。                                                                               

②如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并将Rt△ABC沿∠ABC的平分线BB'方向平移得到△A'B'C',连结AA',BC'.小红要是平移后的四边形ABC'A'是“等邻边四边形”,应平移多少距离(即线段BB'的长)?                                                     (3)应用拓展         如图3,“等邻边四边形”ABCD中,AB=AD,∠BAD+∠BCD==90°,AC,BD为对角线,AC=AB.试探究BC,CD,BD的数量关系.                                                                    

                                

32. (2015·浙江宁波,第26题14分)如图,在平面直角坐标系中,点M是第一象限内一点,过M的直线分别交轴,轴的正半轴于A,B两点,且M是AB的中点. 以OM为直径的⊙P分别交轴,轴于C,D两点,交直线AB于点E(位于点M右下方),连结DE交OM于点K.                                                                                           

(1)若点M的坐标为(3,4),①求A,B两点的坐标;  ②求ME的长;        

(2)若,求∠OBA的度数;                                                                          

(3)设(0<<1),,直接写出关于的函数解析式.                                                         

                                                                                

                                                                                                                              

33.(2015·广东梅州,第24题11分)在Rt△ABC中,∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点,若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.                      

(1)如图1,当α=90°时,线段BD1的长等于 2 ,线段CE1的长等于 2 ;(直接填写结果)                                                                                      

(2)如图2,当α=135°时,求证:BD1=CE1,且BD1⊥CE1;                                 

(3)求点P到AB所在直线的距离的最大值.(直接写出结果)                                                                      

                                                                               

34.(2015·广东广州,第24题14分)如图,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形叫做筝形.                                                                      

(1)试探究筝形对角线之间的位置关系,并证明你的结论;                                  

(2)在筝形ABCD中,已知AB=AD=5,BC=CD,BC>AB,BD、AC为对角线,BD=8

①是否存在一个圆使得A,B,C,D四个点都在这个圆上?若存在,求出圆的半径;若不存在,请说明理由;                                                                       

②过点B作BF⊥CD,垂足为F,BF交AC于点E,连接DE,当四边形ABED为菱形时,求点F到AB的距离.                                                                                                              

                                                                                                               

                                                       

35.(2015·广东广州,第25题14分)已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1·x2<0,|x1|+|x2|=4,点A,C在直线y2=﹣3x+t上.                               

(1)求点C的坐标;                                                                                             

(2)当y1随着x的增大而增大时,求自变量x的取值范围;                                   

(3)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n2﹣5n的最小值.                                                                             

36.(2015·广东佛山,第24题10分)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.                                        

(1)请用配方法求二次函数图象的最高点P的坐标;                                            

(2)小球的落点是A,求点A的坐标;                                                                  

(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;                     

(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.                                                                                                                    

                                                                                                   

37.(2015·广东佛山,第25题11分)如图,在?ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连接BE、BF,使它们分别与AO相交于点G、  

(1)求EG:BG的值;                                                                                          

(2)求证:AG=OG;                                                                                                  

(3)设AG=a,GH=b,HO=c,求a:b:c的值.                                                                                   

                                                                                              

38. (2015湖南邵阳第26题10分)如图,已知直线y=x+k和双曲线y=(k为正整数)交于A,B两点.                                                                                                     

(1)当k=1时,求A、B两点的坐标;                                                                   

(2)当k=2时,求△AOB的面积;                                                                         

(3)当k=1时,△OAB的面积记为S1,当k=2时,△OAB的面积记为S2,…,依此类推,当k=n时,△OAB的面积记为Sn,若S1+S2+…+Sn=,求n的值.                                                                                              

                                                                                                

                                                                                                                               

                                                       

39 .(2015湖北荆州第25题12分)如图,在平面直角坐标系中,O为原点,平行四边形ABCD的边BC在x轴上,D点在y轴上,C点坐标为(2,0),BC=6,∠BCD=60°,点E是AB上一点,AE=3EB,⊙P过D,O,C三点,抛物线y=ax2+bx+c过点D,B,C三点.

(1)求抛物线的解析式;                                                                                       

(2)求证:ED是⊙P的切线;                                                                               

(3)若将△ADE绕点D逆时针旋转90°,E点的对应点E′会落在抛物线y=ax2+bx+c上吗?请说明理由;                                                                                             

(4)若点M为此抛物线的顶点,平面上是否存在点N,使得以点B,D,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.                                                                                      

                                                                        

                                                                     

40 .(2015湖北鄂州第24题12分)如图,在平面直角坐标系xoy中,直线与x 轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是且经过A、C两点,与x轴的另一交点为点B.                                                                 (1)(4分)①直接写出点B的坐标;②求抛物线解析式.                                         (2)(4分)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标.                                                   (3)(4分)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.                                                                           

                                                                                          

41.(2015湖南岳阳第24题10分)如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、C(0,3)三点.                                                                                                       

(1)求抛物线的解析式;                                                                                       

(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.                                       

(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形?若存在,求点M的坐标;若不存在,请说明理由.                                                                    

                                                                                     

42.(2015湖南岳阳第23题10分)                                                                         

已知直线m∥n,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,点P为线段CD的中点.                                                                                             

(1)操作发现:直线l⊥m,l⊥n,垂足分别为A、B,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PA与PB的数量关系:     .                                      

(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PA与PB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由.       

(3)延伸探究:在图②的情况下,把直线l绕点A旋转,使得∠APB=90°(如图③所示),若两平行线m、n之间的距离为2k.求证:PA·PB=k·AB.                                                                                                              

                           

43 .(2015·湖北省孝感市,第16题3分)如图,四边形是矩形纸片,.对折矩形纸片,使与        重合,折痕为;展平后再过点折叠矩形纸片,使点落在上的点,折痕与相交于点;再次展平,连接,,延长交于点.                                                                       

有如下结论:                                                                                                               

①;    ②;   ③;                            

④△是等边三角形; ⑤为线段上一动点,                            

是的中点,则的最小值是.其中正确结论的序号是    ☆     .                                                                           

44.(2015·湖南省益阳市,第21题15分)已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A′,B′.        

(1)求m的值及抛物线E2所表示的二次函数的表达式;                                       

(2)如图1,在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;                        

(3)如图2,P为第一象限内的抛物线E1上与点A不重合的一点,连接OP并延长与抛物线E2相交于点P′,求△PAA′与△P′BB′的面积之比.                                                                                                               

                                  

45.(2015·湖北省孝感市,第24题12分)   在平面直角坐标系中,抛物线与轴交于点,,与轴交于点,直线经过,两点.                                                                                

(1)求抛物线的解析式;(3分)                                                                           

(2)在上方的抛物线上有一动点.                                                            

①如图1,当点运动到某位置时,以为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点的坐标;(4分)                                                         

②如图2,过点,的直线交于点,若,求的值.   

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                           

46.(2015·湖南省衡阳市,第28题10分)                                                          

如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连结CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M作MN∥OA,交BO于点N,连结ND、BM,设OP=t.                                     

    (1)求点M的坐标(用含t的代数式表示);                                                       

    (2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由; 

(3)当为何值时,四边形BNDM的面积最小.                                                                                

                                                                                             

47、(2015·湖南省常德市,第25题10分)如图,曲线抛物线的一部分,且表达式为:曲线与曲线关于直线对称。                            

(1)求A、B、C三点的坐标和曲线的表达式;                                          

(2)过点D作轴交曲线于点D,连接AD,在曲线上有一点M,使得四边形ACDM为筝形(如果一个四边形的一条对角线被另一条对角线垂直平分,这样的四边形为筝形),请求出点M的横坐标。                                      

(3)设直线CM与轴交于点N,试问在线段MN下方的曲线上是否存在一点P,使△PMN的面积最大?若存在,求出点P的坐标;若不存在,请说明理由。                                                                                             

                                                                                                                               

                                                                     

 

 

 

 

 

 

 

 

 

 

48.(2015·湖北省武汉市,第24题12分)已知抛物线y=x2+c与x轴交于A(-1,0),B两点,交y轴于点C                                                                       

(1) 求抛物线的解析式                                                                                        

(2) 点E(m,n)是第二象限内一点,过点E作EF⊥x轴交抛物线于点F,过点F作FG⊥y轴于点G,连接CE、CF,若∠CEF=∠CFG,求n的值并直接写出m的取值范围(利用图1完成你的探究)                                                               

(3) 如图2,点P是线段OB上一动点(不包括点O、B),PM⊥x轴交抛物线于点M,∠OBQ=∠OMP,BQ交直线PM于点Q,设点P的横坐标为t,求△PBQ的周长                                                                                         

                                                                 1. (2014·上海,第25题14分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.

初三数学复习试题

(1)当圆C经过点A时,求CP的长;

(2)联结AP,当AP∥CG时,求弦EF的长;

(3)当△AGE是等腰三角形时,求圆C的半径长.

 

4. (2014·江苏苏州,第28题9分)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)

(1)如图①,连接OA、AC,则∠OAC的度数为     ;

(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);

(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).

 

6. (2014·山东淄博,第24题9分)如图,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.

(1)使∠APB=30°的点P有 无数 个;

(2)若点P在y轴上,且∠APB=30°,求满足条件的点P的坐标;

(3)当点P在y轴上移动时,∠APB是否有最大值?若有,求点P的坐标,并说明此时∠APB最大的理由;若没有,也请说明理由.

 

7.(2014·浙江湖州,第24题分)已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0)

(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;

(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;

(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由.

 

 

 

 

8. (2014·湘潭,第25题) △ABC为、等边三角形,边长为a,DF⊥AB,EF⊥AC,

(1)求证:△BDF∽△CEF;

(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;

(3)已知A、D、F、E四点共圆,已知tan∠EDF=,求此圆直径.

(第1题图)

9. (2014·株洲,第23题,8分)如图,PQ为圆O的直径,点B在线段PQ的延长线上,OQ=QB=1,动点A在圆O的上半圆运动(含P、Q两点),以线段AB为边向上作等边三角形ABC.

(1)当线段AB所在的直线与圆O相切时,求△ABC的面积(图1);

(2)设∠AOB=α,当线段AB、与圆O只有一个公共点(即A点)时,求α的范围(图2,直接写出答案);

(3)当线段AB与圆O有两个公共点A、M时,如果AO⊥PM于点N,求CM的长度(图3).

                       (第5题图)

 

10. (2014·湖北宜昌,第21题8分)已知:如图,四边形ABCD为平行四边形,以CD为直径作⊙O,⊙O与边BC相交于点F,⊙O的切线DE与边AB相交于点E,且AE=3EB.

(1)求证:△ADE∽△CDF;

(2)当CF:FB=1:2时,求⊙O与?ABCD的面积之比.

 

 

11.(2014·四川成都,第27题10分)如图,在⊙O的内接△ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.

(1)求证:△PAC∽△PDF;

(2)若AB=5,=,求PD的长;

(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)

 

12. (2014·湖北荆门,第24题12分)如图①,已知:在矩形ABCD的边AD上有一点O,OA=,以O为圆心,OA长为半径作圆,交AD于M,恰好与BD相切于H,过H作弦HP∥AB,弦HP=3.若点E是CD边上一动点(点E与C,D不重合),过E作直线EF∥BD交BC于F,再把△CEF沿着动直线EF对折,点C的对应点为G.设CE=x,△EFG与矩形ABCD重叠部分的面积为S.

(1)求证:四边形ABHP是菱形;

(2)问△EFG的直角顶点G能落在⊙O上吗?若能,求出此时x的值;若不能,请说明理由;

(3)求S与x之间的函数关系式,并直接写出FG与⊙O相切时,S的值.

15. (2014·攀枝花,第23题12分)如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.

(1)求B、C两点的坐标;

(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;

(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.

 

16.(2014·广西来宾,第24题10分)如图,AB为⊙O的直径,BF切⊙O于点B,AF交⊙O于点D,点C在DF上,BC交⊙O于点E,且∠BAF=2∠CBF,CG⊥BF于点G,连接AE.

(1)直接写出AE与BC的位置关系;

(2)求证:△BCG∽△ACE;

(3)若∠F=60°,GF=1,求⊙O的半径长.

17.((2014年广西南宁,第26题10分)在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A在点B的左侧.

(1)如图1,当k=1时,直接写出A,B两点的坐标;

(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;

(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k的值;若不存在,请说明理由.

 

18.(2014·黔南州,第26题12分)如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).

(1)求此抛物线的解析式                            

(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;

(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.

25、(2014·泰州25题)如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b为常数,b>0)的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.

(1)若直线AB与有两个交点F、G.

①求∠CFE的度数;

②用含b的代数式表示FG2,并直接写出b的取值范围;

(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.

  


  

爱华网本文地址 » http://www.aihuau.com/a/418851/981621749095.html

更多阅读

初三数学复习计划

  初三数学第二轮复习承上启下,是知识系统化、条理化、促进灵活运用的关键时期,是促进学生素质、能力发展的关键时期,因而对训练、检测等要求较高。纵观近几年的中考试题,不难发现试题稳中求变,变中求新。鉴于此,我们备课组复习时必须做

对初三数学总复习的思考

  初三数学总复习是整个初中数学教学工作的重要环节,也是提高教学质量 的一个重要环节。1、重视课本,系统复习中考命题以基础题为主,有些是课本上的原题改造的,虽然后面的大题“高于教材”,但原型一般还是教材中的例题或习题的引伸、

初三上册历史期末复习试题

在学生们复习历史的过程中,究竟要做好哪些试题的复习准备呢?让我们来看看这套试题卷能不能帮助到你!以下是由小编收集整理的人教版初三上册历史期末复习试题,欢迎阅读!人教版初三上册历史期末复习试题选择题第一次世界大战的转折点

新目标初三上册英Unit11期末复习试题及答案

作为学生的我们,应该为即将到来的英语考试做出什么样的准备呢?下面是小编整理的新目标初三上册英Unit11期末复习试题以供大家阅读。新目标初三上册英Unit11期末复习试题一. 单项选择(每小题1分,共15分)从A、B、C、D四个选项中选择

四年级上册数学第二单元期末冲刺100分复习试题

对于四年级数学的复习,除了看知识点之外,还要多做练习!那么,究竟要怎样有效的去做题呢?接下来不妨和小编一起来做份北师大版四年级上册数学第二单元期末冲刺100分复习试题,希望对各位有帮助!北师大版四年级上册数学第二单元期末冲刺100

声明:《初三数学复习试题》为网友若离只是顷刻间分享!如侵犯到您的合法权益请联系我们删除