莫比乌斯带 莫比乌斯带-简介,莫比乌斯带-莫比乌斯

公元1858年,德国数学家莫比乌斯(Mobius,1790~1868)发现:把一根纸条扭转180°后,两头再粘接起来做成的纸带圈,具有魔术般的性质。普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘。这种纸带被称为“莫比乌斯带”。

莫比乌斯_莫比乌斯带 -简介


莫比乌斯带莫比乌斯带(M?biusstrip或者M?biusband),又译梅比斯环或麦比乌斯带,是一种拓扑学结构,它只有一个面(表面),和一个边界。它是由德国数学家、天文学家莫比乌斯和约翰・李斯丁在1858年独立发现的。这个结构可以用一个纸带旋转半圈再把两端粘上之后轻而易举地制作出来。事实上有两种不同的莫比乌斯带镜像,他们相互对称。如果把纸带顺时针旋转再粘贴,就会形成一个右手性的莫比乌斯带,反之亦类似。

莫比乌斯带本身具有很多奇妙的性质。如果从中间剪开一个莫比乌斯带,不会得到两个窄的带子,而是会形成一个把纸带的端头扭转了两次再结合的环(并不是莫比乌斯带),再把刚刚做出那个把纸带的端头扭转了两次再结合的环从中间剪开,则变成两个环。如果你把带子的宽度分为三分,并沿着分割线剪开的话,会得到两个环,一个是窄一些的莫比乌斯带,另一个则是一个旋转了两次再结合的环。另外一个有趣的特性是将纸带旋转多次再粘贴末端而产生的。比如旋转三个半圈的带子再剪开后会形成一个三叶结。剪开带子之后再进行旋转,然后重新粘贴则会变成数个Paradromic。

莫比乌斯带 莫比乌斯带-简介,莫比乌斯带-莫比乌斯

莫比乌斯带常被认为是无穷大符号“∞”的创意来源,因为如果某个人站在一个巨大的莫比乌斯带的表面上沿着他能看到的“路”一直走下去,他就永远不会停下来。但是这是一个不真实的传闻,因为“∞”的发明比莫比乌斯带还要早。

莫比乌斯_莫比乌斯带 -莫比乌斯


莫比乌斯莫比乌斯,全名:奥古斯特・费迪南德・莫比乌斯(August FerdiUs MobiUs,1790-1868年)是德国数学家、天文学家。1790年11月17日生于德国瑙姆堡附近的舒尔普福塔。1808年入莱比锡大学学习法律,后转攻数学、物理和天文。1814年获博士学位,1816年任副教授,1829年当选为柏林科学院通讯院士,1844年任莱比锡大学天文与高等力学教授。1868年9月26日卒于莱比锡。

莫比乌斯的科学贡献涉及天文和数学两大领域。在数学方面,首先是他对19世纪射影几何学的影响。莫比乌斯发展了射影几何学的代数方法。他在《重心计算》(1827年)一书中,创立了代数射影几何的基本概念------齐次坐标。在同一著作中他还揭示了对偶原理与配极之间的关系,并对交比概念给出了完善的处理。莫比乌斯带(1858年)。他较早对拓扑学作深入的探讨并给出恰当的提法。此外,莫比乌斯对球面三角等其它数学分支也有重要贡献。

莫比乌斯_莫比乌斯带 -证明方法


剪开莫比乌斯带

拿一张白的长纸条,把一面涂成黑色,然后把其中一端翻一个身,如同上页图那样粘成一个莫比乌斯带。现在像图中那样用剪刀沿纸带的中央把它剪开。你就会惊奇地发现,纸带不仅没有一分为二,反而像图中那样剪出一个两倍长的纸圈!

有趣的是:新得到的这个较长的纸圈,本身却是一个双侧曲面,它的两条边界自身虽不打结,但却相互套在一起!为了让读者直观地看到这一不太容易想象出来的事实,我们可以把上述纸圈,再一次沿中线剪开,这回可真的一分为二了!得到的是两条互相套着的纸圈,而原先的两条边界,则分别包含于两条纸圈之中,只是每条纸圈本身并不打结罢了。

莫比乌斯带还有更为奇异的特性。一些在平面上无法解决的问题,却不可思议地在莫比乌斯带上获得了解决!比如在普通空间无法实现的“手套易位问题:人左右两手的手套虽然极为相像,但却有着本质的不同。我们不可能把左手的手套贴切地戴到右手上去;也不能把右手的手套贴切地戴到左手上来。无论你怎么扭来转去,左手套永远是左手套,右手套也永远是右手套!不过,倘若自你把它搬到莫比乌斯带上来,那么解决起来就易如反掌了。”

在自然界有许多物体也类似于手套那样,它们本身具备完全相像的对称部分,但一个是左手系的,另一个是右手系的,它们之间有着极大的不同。

“莫比乌斯带”在生活和生产中已经有了一些用途。例如,用皮带传送的动力机械的皮带就可以做成“莫比乌斯带”状,这样皮带就不会只磨损一面了。如果把录音机的磁带做成“莫比乌斯带”状,就不存在正反两面的问题了,磁带就只有一个面了。

莫比乌斯带是一种拓扑图形,什么是拓扑呢?拓扑所研究的是几何图形的一些性质,它们在图形被弯曲、拉大、缩小或任意的变形下保持不变,只要在变形过程中不使原来不同的点重合为同一个点,又不产生新点。换句话说,这种变换的条件是:在原来图形的点与变换了图形的点之间存在着一一对应的关系,并且邻近的点还是邻近的点。这样的变换叫做拓扑变换。拓扑有一个形象说法――橡皮几何学。因为如果图形都是用橡皮做成的,就能把许多图形进行拓扑变换。例如一个橡皮圈能变形成一个圆圈或一个方圈。但是一个橡皮圈不能由拓扑变换成为一个阿拉伯数字8。因为不把圈上的两个点重合在一起,圈就不会变成8,“莫比乌斯带”正好满足了上述要求。

莫比乌斯_莫比乌斯带 -相关理论


莫比乌斯带这是数学家发现的第一个单侧曲面。

在积分理论发展的过程中,由于曲面通常有两侧,所以人们要给曲面定个方向才能进行积分。但是,当时还没有人知道是否存在这样的曲面,它只有一侧从而无法在它上面确定一个积分的方向。

而莫比乌斯带正是这样的一个单侧曲面,它只有一个侧面从而无法定向。所以这类曲面又有一个名字叫“不可定向曲面”。

由于莫比乌斯带只有一个面,这个面的长度自然就是普通纸环一面长度的两倍了。有人想到将这个特性用到传送皮带上,这样的话就可以把磨损分摊到更多的地方,从而提高皮带的寿命。这个想法还获得了美国的专利。如果我们把纸带想像成金属带,让电流由其中一个夹子流入而从另一个夹子流出的话,在纸带表面的电流有两个可能的流动方向,而这两个方向的电流产生的磁场恰好互相抵消。也就是说,电流在这个装置流动的时候不会产生磁场,所以也不会有电池感应的现象发生。这就是一个无电感电阻。这种电阻就叫默比乌斯电阻。

莫比乌斯带在艺术和文化作品中也经常被引用,作为“无限循环”的一个象征。国际通用的循环再造标志就是一个绿色的、摆放成三角形的莫比乌斯带。在《哆啦A梦》(小叮当)漫画中,就有一个形状是莫比乌斯带的道具,只要把它放在门把手上,里边的人开门就会回到同一个房间里去。如果我们看科学馆门前的环状雕塑,多半也利用了类似莫比乌斯带的性质,有空的话经过这些雕塑可以数一下这些环有多少个面多少条边沿,我估计绝大部分结果都是1。而至于埃舍尔的例子就更是众人皆知,也不用我饶舌了。

实验室中也有可能产生莫比乌斯带形状的粒子。前不久,一群科学家在Journal of Chemical Physics上发表了一篇论文,其中预言了一种莫比乌斯带形状的碳单质(准确来说应该是石墨烯)。它能抵抗摄氏200度左右的温度,算是相当稳定。由于它莫比乌斯带的结构,它应该是一个偶极子,从而可以形成稳定的晶体。现在就等科学家们把它实际做出来了。

这一切,都是由数学家看到一个粘错的纸环开始的。

莫比乌斯_莫比乌斯带 -和几何学关系

可以用参数方程式创造出立体莫比乌斯带(如右图)
莫比乌斯带的参数方程
这个方程组可以创造一个边长为1半径为1的莫比乌斯带,所处位置为x-y面,中心为(0,0,0)。参数u在v从一个边移动到另一边的时候环绕整个带子。
从拓扑学上来讲,莫比乌斯带可以定义为矩阵[0,1]×[0,1],边由在0≤x≤1的时候(x,0)~(1-x,1)决定。
莫比乌斯带是一个二维的紧致流形(即一个有边界的面),可以嵌入到三维或更高维的流形中。它是一个不可定向的的标准范例,可以看作RP#RP。同时也是数学上描绘纤维丛的例子之一。特别地,它是一个有一纤维单位区间,I=[0,1]的圆S上的非平凡丛。仅从莫比乌斯带的边缘看去给出S上一个非平凡的两个点(或Z2)的从。

莫比乌斯_莫比乌斯带 -有关的物体

和莫比乌斯带非常近似的一个几何学物体叫做克莱因瓶。一个克莱因瓶可以用粘贴两个莫比乌斯带的方法制作出来。但是如果物体不进行自我交叉,这个步骤在三维空间内是不可能完成的。

另外一个相近的结构是真投影屏面。如果在真投影屏面上有一个洞的话,从左侧看就会形成一个莫比乌斯带。或者把莫比乌斯带的边界进行有限定义,就会形成一个真投影屏面。更形象地说法是重建莫比乌斯带的边缘形成一个普通的环。有一种普遍的误解认为如果不进行平面的自我交叉就无法在三维空间内形成一个有普通环边缘的莫比乌斯带。事实上是可能的,方法是这样的:定义C为xy面上的单位圆,现在连接C上面的对拓点,比如θ和θ+ π。当θ在0到π/2之间运动的时候,在xy面上方做这条线的反余切,其他情况则在面下做反余切。

莫比乌斯_莫比乌斯带 -应用

麦比乌斯圈在数学中的应用

数学中有一个重要分支叫拓扑学,主要是研究几何图形连续改变形状时的一些特征和规律的,麦比乌斯圈变成了拓扑学中最有趣的单侧面问题之一。

麦比乌斯圈在实际生活中的运用

麦比乌斯圈的概念被广泛地应用到了建筑,艺术,工业生产中。运用麦比乌斯圈原理我们可以建造立交桥和道路,避免车辆行人的拥堵。

一、1979年,美国著名轮胎公司百路驰创造性地把传送带制成麦比乌斯圈形状,这样一来,整条传送带环面各处均匀地承受磨损,避免了普通传送带单面受损的情况,使得其寿命延长了整整一倍。

二、针式打印机靠打印针击打色带在纸上留下一个一个的墨点,为充分利用色带的全部表面,色带也常被设计成麦比乌斯圈。

三、在美国匹兹堡著名肯尼森林游乐园里,就有一部“加强版”的云霄飞车――它的轨道是一个麦比乌斯圈。乘客在轨道的两面上飞驰。

四、麦比乌斯圈循环往复的几何特征,蕴含着永恒、无限的意义,因此常被用于各类标志设计。微处理器厂商PowerArchitecture的商标就是一条麦比乌斯圈,甚至垃圾回收标志也是由麦比乌斯圈变化而来。

莫比乌斯_莫比乌斯带 -拓扑变换


莫比乌斯带莫比乌斯带是一种拓展图形,它们在图形被弯曲、拉大、缩小或任意的变形下保持不变,只要在变形过程中不使原来不同的点重合为同一个点,又不产生新点。换句话说,这种变换的条件是:在原来图形的点与变换了图形的点之间存在着一一对应的关系,并且邻近的点还是邻近的点。这样的变换叫做拓扑变换。拓扑有一个形象说法――橡皮几何学。因为如果图形都是用橡皮做成的,就能把许多图形进行拓扑变换。例如一个橡皮圈能变形成一个圆圈或一个方圈。但是一个橡皮圈不能由拓扑变换成为一个阿拉伯数字8。因为不把圈上的两个点重合在一起,圈就不会变成8,“莫比乌斯带”正好满足了上述要求。

  

爱华网本文地址 » http://www.aihuau.com/a/8103290103/44750.html

更多阅读

了不起的盖茨比作品及作者简介 乡愁的作者及作品简介

了不起的盖茨比作品及作者简介《了不起的盖茨比》是20世纪美国著名作家菲茨吉拉德的代表作。书中描述了出身贫寒的盖茨比如何历尽艰辛不择手段地攫取财富最终从一个穷光蛋变成人们心中的“了不起”的豪富,却又如何苦苦追求初恋时由于

比干挖心 比干挖心-简介,比干挖心-相关古迹

比干挖心是一个历史典故,比干是殷商时期沫邑(今河南淇县)人,是商朝第16代王帝乙的弟弟,按照商朝的继承法,长子继位,次子分封。比干既是封王,又是当时商朝最高的政务官“少师”。他是历史上第一个以死谏君的忠臣;比干是商纣王的叔父,又是他的丞

琼・斯莫斯 琼・斯莫斯-个人简介,琼・斯莫斯-个人资料

琼・斯莫斯 (Joan Smalls) ,女,1988年出生于波多黎各,模特,2007年与Elite模特经纪公司签约,现为香奈儿的代言人。joansmalls_琼・斯莫斯 -个人简介琼・斯莫斯琼・斯莫斯(JoanSmalls)1988年出生于波多黎各,2007年与Elite模特经纪公司签约

声明:《莫比乌斯带 莫比乌斯带-简介,莫比乌斯带-莫比乌斯》为网友純情小莮子分享!如侵犯到您的合法权益请联系我们删除