微积分概念发展史 微分流形 微分流形-概念,微分流形-类别

微分流形(differentiable manifold),也称为光滑流形(smooth manifold),是拓扑学和几何学中一类重要的空间,是带有微分结构的拓扑流形。 微分流形是微分几何与微分拓扑的主要研究对象,是三维欧式空间中曲线和曲面概念的推广,可以有更高的维数,而不必有距离和度量的概念。

微分流形_微分流形 -概念

参见条目:流形


1
2

具体说来,设M是一个豪斯多夫拓扑空间。U是M的开集,h是U到n维欧氏空间R的开集(常取为单位球内部或立方体内部等等)上的一个同胚映射,则(U,h)称为一个坐标图,U称为其中点的一个坐标邻域。设M为开集系{Uα}所复盖,则(Uα,hα)的集合称为M的一个坐标图册。如果M的坐标图册中任何两个坐标图都是C相关的,则称M有C微分结构,又称M为n维的C微分流形。C相关是指流形M上同一点的不同坐标之间的变换关系是C可微分的(k=0,1,…,∞或ω),依通常记号C表示解析函数。具体来说, 如p∈Uα∩Uβ,(x,)(x)(i=1,…,n)分别是p在两个坐标图(Uα,hα),(Uβ,hβ)下的(局部)坐标,即那么它们之间的关系式可表为而?关于x(j=1,2,…,n)具有直到k次的连续导数。k=0时,M是拓扑流形;k>0时,就是微分流形;k=ω时,是解析流形。C流形又常称为光滑流形。如果微分流形M是一个仿紧或紧致拓扑空间,则称M为仿紧或紧致微分流形。如果可选取坐标图册使微分流形M中各个坐标邻域之间的坐标变换的雅可比行列式都大于零,则称这个流形是可定向的。球面是可定向的,麦比乌斯带是不可定向的。

同一拓扑流形可以具有本质上不同的微分结构。米尔诺(John Milnor)首先发现作为一个拓扑流形,七维球面上可有不同于标准微分结构的怪异微分结构。后来弗里德曼(Michael Freedman)等得出如下的重要结果:四维欧氏空间中也有多种微分结构,这与其他维数的欧氏空间只有惟一的微分结构有着重大区别。

微分流形_微分流形 -类别

可微映射

设φ是从C流形M到C流形N的连续映射,如果对于N上的任意Cr函数?,M上的函数?。φ总是Cr的,则称φ是Cr可微映射,或简称Cr映射。如果φ是从M到N上的同胚,而且φ和φ都是C的,则称φ为微分同胚,此时也称M与N是微分同胚的微分流形。

映射的微分


公式

设φ是从M到N的C映射。对M上点p的切向量x可以如下地定义N在点φ(p)处的切向量x┡:

这个对应x→x┡用dφP表示,称为φ在点p处的微分。微分dφP是从切空间TP(M)到

(N)的线性映射,有时也称为φ在切空间的诱导映射, 常用φ*P或φ*表示。利用对偶性,φ也自然地诱导了从余切空间

到T坝的线性映射,常记为(dφP)或φ坝或φ。由张量积运算,φ还可以诱导对应点之间某些张量空间之间的线性映射。

子流形

设M和N是两个C流形,φ:M→N是C映射。如果微分dφP在M的每一点都是单射,则称φ是浸入,而φ(M)称为N的浸入子流形。如果浸入φ还是单射,则称为嵌入,此时φ(M)称为N的嵌入子流形。

微分流形_微分流形 -张量场

微分流形上可以定义可微函数、切向量、切向量场、各种张量场等对象并建立其上的分析学,并可以赋予更复杂的几何结构以研究它们的性质。

微积分概念发展史 微分流形 微分流形-概念,微分流形-类别

光滑函数

流形M上的实数值连续函数f:M →R是一个光滑函数,如果对每一个相容的坐标卡ρ:U→M, f(ρ):U→R是一个U上的光滑函数。因为坐标卡之间的坐标变换是光滑映射,这是一个良好的定义。特别的,光滑函数可以看成一种0阶张量场。

向量场


条件

设p∈M,M在点p处的一个切向量是指从F(M)到R的一个线性映射x,使得对于任意的?,g∈F(M),满足:

对于在p点的切向量x1,x2和实数λ1,λ2,定义λ1x1+λ2x2如下: 那么,点p处的切向量全体构成一个n维的实线性空间TP,TP称为在p处M的切空间或切向量空间(也记为TP(M))。如果(x,x,…,x)为点p处

的局部坐标系,则由

定义的n个独立的切向量,构成TP的一组基,称为自然标架(或坐标标架)。M的切向量全体构成以M为底空间的向量丛(见纤维丛),称为M的切向量丛,简称切丛。M的切丛的一个截面称为M上的一个向量场。在局部坐标系中,向量场可表成

的形式,式中ξ(x)是坐标(x)的C函数。

TP的对偶空间称为M在点p处的余切空间,记为T坝。T坝中的元素称为余切向量,也称协变向量。M的余切向量全体构成M的余切向量丛,简称余切丛,它的截面称为M上的一次微分形式。 “1=2”

一般张量场

由切空间和余切空间通过张量积的运算可以得到M在点p处的各种(r,s)型张量,M的(r,s)型的张量全体构成张量丛,它的截面就是M上的一个(r,s)型张量场(见多重线性代数、张量)。

微分流形_微分流形 -微分形式


公式
公式

在微分流形上还可以定义外微分形式(见外微分形式)。p次外微分形式(2)是一些微分的外积的线性组合,这些微分的外积是反对称的,即是p阶反对称协变张量,

M上p次外微分形式的全体构成一个实数域上的无限维向量空间E。对外微分形式可以进行加法运算(同次外微分形式可以相加),外积运算(p次外微分形式与q次外微分形式的外积是一个(p+q)次外微分形式),还可以进行外微分运算及积分运算。在局部坐标下,外微分运算为


公式

(3) 设ω∈E且dω =0,则称ω为闭形式。M上p次闭形式的全体构成E的一个子空间记为Z。设ω∈E,且ω=dσ(σ∈E,则称ω为正合形式。正合形式一定是闭形式。M上p次正合形式的全体也构成E的一个子空间记为B,B

  

爱华网本文地址 » http://www.aihuau.com/a/8103320103/56592.html

更多阅读

计算机发展史 计算机发展史简介

计算机发展史,大家了解一下吧!NO1. 原始的计算方法原始的计算方法指算远古时代,从人类社会开始形成的时候起,人就不可避免地要和数打交道。在茹毛饮血的原始社会,狩猎、采集野果是人类赖以生存的手段。伴随着生存斗争,自然而然地产生了

微分流形与黎曼几何学习笔记

已有 3984 次阅读 2010-6-8 08:57 |个人分类:Higher Order Partial Differential Equati|系统分类:教学心得|关键词:微分流形 黎曼几何由于种种原因要恶补一下微分流形和黎曼几何,吸取一下“前辈”们的经验,也希望大家能提供一些更好

电子信息与电气工程类专业 日本电子电气专业

本补充标准适用于电气工程及其自动化、自动化、电子信息工程、通信工程、信息工程、电子科学与技术、微电子科学与工程、光电信息科学与工程等专业。1.课程体系1.1课程设置课程由学校根据培养目标与办学特色自主设置。本专业补充标

微积分 高数

微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论

声明:《微积分概念发展史 微分流形 微分流形-概念,微分流形-类别》为网友抠脚大叔分享!如侵犯到您的合法权益请联系我们删除